Conclusion 0000

Computing challenges for Monte-Carlo event generators

Marek Schönherr

IPPP, Durham University

ROYAL SOCIETY

Content

1 General event generator frameworks

2 Code structure

General event generator frameworks

1 General event generator frameworks

2 Code structure

3 Conclusion

Conclusion 0000

General event generator frameworks

- hard scattering
 - (mostly) constant program flow
 - evaluation of very large expressions
 - large memory requirements few GB for e.g. V + 2j @ NLO
 - challenge: generate good weight
 distribution in finite time
- parton showers multiple interactions hadronisation hadron decays
 - mostly Markov Chain techniques
 - highly variable program flow
 - generally small expressions
 - low memory requirements, largest are typically the hadron decay tables

General event generator frameworks	Code structure	Conclusion
00000000	0000	0000

Matrix elements

- ideal weight distribution: uniform weights
- when all events contribute the same to any given observable, the fewest events are needed to reach a given statistical prowess of a sample
 - \Rightarrow unweighted events

Parton showers and non-perturbative event phases

• generally set up to generate unweighted distributions through probabilistic implementations

Timings

• Example: V + jets @ LO and NLO in SHERPA

General	event	generator	frameworks
0000	0000	0	

Conclusion 0000

Weighted W+0.. \leq 4j@LO

Unweighted W+0.. \leq 4j@LO

Conclusion 0000

Weighted W+0.. \leq 4j@LO

Unweighted W+0.. \leq 4j@LO

Conclusion 0000

Weighted W+0.. \leq 4j@LO

Unweighted W+0..≤4j@LO

natritelements

General	event	generator	frameworks
0000	0000	0	

Conclusion 0000

Weighted W+0..≤4j@LO 0j

Unweighted $W+0..\leq 4j@LO$

Conclusion 0000

Weighted W+0.. \leq 4j@LO

Unweighted W+0.. \leq 4j@LO

Conclusion 0000

Weighted W+0..≤4j@LO

Unweighted W+0.. \leq 4j@LO

General event generator	frameworks
00000000	

Conclusion

Weighted W+0.. \leq 4j@LO

0j	
1j	
	Matri- ele
	'nents

Unweighted W+0..≤4j@LO

General event generator	frameworks
00000000	

Conclusion 0000

Weighted W+0.. \leq 4j@LO

0j		
1j		
	Carton Shower	Atri+ element

Unweighted W+0.. \leq 4j@LO

General event generator	frameworks
00000000	

Conclusion

Weighted W+0.. \leq 4j@LO

0j	
1j	
	- The interaction of the interac
	2 or Cions ents

Unweighted W+0..≤4j@LO

General	event	generator	frameworks
0000	0000	0	

Conclusion 0000

Weighted W+0.. \leq 4j@LO

0j	
1j	
	Carton Nult adratistic forment

Unweighted W+0.. \leq 4j@LO

General	event	generator	frameworks
0000	0000	0	

Conclusion 0000

Weighted W+0.. \leq 4j@LO

0j	
1j	
	Carton and dron the drot the contract of the c

Unweighted W+0.. \leq 4j@LO

General	event	generator	frameworks
0000	0000	0	

Conclusion 0000

Unweighted W+0..≤4j@LO

General	event	generator	frameworks
0000	0000	0	

Conclusion 0000

Weighted W+0.. \leq 4j@LO

0j	
1j	
2j	
3j	

Unweighted W+0..≤4j@LO

Conclusion 0000

Weighted W+0.. \leq 4j@LO

Unweighted W+0..≤4j@LO

- matrix elements

Weighted W+0..≤4j@LO 0j 1j 2j 3j 4i

Unweighted W+0..≤4j@LO

Unweighted W+0..≤4j@LO

Unweighted W+0..≤4j@LO

matrix elements dominated by CKKW clustering

Unweighted W+0..≤4j@LO

matrix elements dominated by CKKW clustering

Unweighted W+0..≤4j@LO

Conclusion 0000

Timing distribution:NLOmerging using BlackHatWeighted W+≤0..2j@NLOUnweighted W+≤0..2j@NLO

Weight distributions LO weight distribution

Unweighting

- hit-and-miss against maximum of weight distribution
- if "max" is artificially lowered (or event beyond "max" encountered) evts must acquire rel. weight wrt. set "max"
- higher multiplicity \rightarrow wider weight distribution \Rightarrow worse unweighting efficiency
- bad unweighting efficieny at NLO dominated by H events
- \Rightarrow performance limited by unweighting efficiency

Weight distributions NLO weight distribution

Unweighting

- hit-and-miss against maximum of weight distribution
- if "max" is artificially lowered (or event beyond "max" encountered) evts must acquire rel. weight wrt. set "max"
- higher multiplicity \rightarrow wider weight distribution \Rightarrow worse unweighting efficiency
- bad unweighting efficieny at NLO dominated by H events
- \Rightarrow performance limited by unweighting efficiency

V plus multijet production

Sherpa+Pythia

- $\mathrm{pp}
 ightarrow V + 0, \dots, 9\, jets$
- generate unweighted events on large clusters
- memory is bottleneck

number of trials in unweighting

- write HDF5 files (MPI comp.)
- process w/ parton shower, large memory requirements for creating CKKW histories

Conclusion 0000

Improvements throught machine learning

Phase space sampling / un-weighting

- replace old-school 1D machine learning algoirthms (VEGAS) by multivariate / NN techniques
- many tries, promising on toy examples

Bendavid arXiv:1707.00028 Klimek, Perelstein arXiv:1810.11509 Otten et.al arXiv:1901.00875

 realistic implementation in working event generator Bothmann et.al arXiv:2001.05478 Gao et.al arXiv:2001.10028

gg
ightarrow 3g

improvements only for cases that need no improvements, worse than VEGAS for bottleneck cases not smart enough yet?

Conclusion 0000

Improvements throught machine learning

Phase space sampling / un-weighting

- replace old-school 1D machine learning algoirthms (VEGAS) by multivariate / NN techniques
- many tries, promising on toy examples

Bendavid arXiv:1707.00028 Klimek, Perelstein arXiv:1810.11509 Otten et.al arXiv:1901.00875

 realistic implementation in working event generator Bothmann et.al arXiv:2001.05478 Gao et.al arXiv:2001.10028

gg
ightarrow 4g

improvements only for cases that need no improvements, worse than VEGAS for bottleneck cases not smart enough yet?

Conclusion 0000

Additional sources for degredation of statistical power

Negative weights

• NLO matching methods (to var. degree) introduce neg. weights

$$N_{
m eff} = N \left(1 - 2f
ight)^2$$

- typically arise as correction for previous overestimate
- \Rightarrow neg. weighted events must be kept to minimum

Parton shower weights

- parton showers operate at LO and leading colour, such that all splitting functions positive definite
- corrections beyond introduce weights
 - \rightarrow spoil hard-won uniform weights of unweighted ME configurations first ideas for improvements, eg. resampling Olson et.al arXiv:1912.02436

General event generator frameworks	Code structure	Conclusion
00000000	0000	0000

1 General event generator frameworks

2 Code structure

3 Conclusion

Design phases & prevalent design paradigms

- 3000 BC 2000 one monolithic fortran file with a handful of common blocks
 - \rightarrow limited capabilities, no maintainability, no user customisability
- 2000-2020 object orientated code design, typically in C++
 → vastly extended capabilities, multi-author maintenance,
 highly customisable
 - one code that can calculate all processes using the same methods, code-generating code
 - dynamic library loading (on demand)
 - plenty of casting operations, virtual table look-ups
 - dynamic memory allocation: object sizes not clear at compile time
 - designed and programmed by physicists
- 2020+ back to monolithic structure for computatationally intensive parts of the code? predictable program flow? process specific programs?

Conclusion 0000

Design phases & prevalent design paradigms

 3000 BC – 2000 one monolithic fortran file with a handful of common blocks

 \rightarrow limited capabilities, no maintainability, no user customisability

- 2000-2020 object orientated code design, typically in C++
 - \rightarrow vastly extended capabilities, multi-author maintenance, highly customisable
 - one code that can calculate all processes using the same methods, code-generating code
 - dynamic library loading (on demand)
 - plenty of casting operations, virtual table look-ups
 - dynamic memory allocation: object sizes not clear at compile time
 - designed and programmed by physicists
- 2020+ back to monolithic structure for computatationally intensive parts of the code? predictable program flow? process specific programs?

Conclusion 0000

Design phases & prevalent design paradigms

 3000 BC – 2000 one monolithic fortran file with a handful of common blocks

 \rightarrow limited capabilities, no maintainability, no user customisability

- 2000-2020 object orientated code design, typically in C++
 - \rightarrow vastly extended capabilities, multi-author maintenance, highly customisable
 - one code that can calculate all processes using the same methods, code-generating code
 - dynamic library loading (on demand)
 - plenty of casting operations, virtual table look-ups
 - dynamic memory allocation: object sizes not clear at compile time
 - designed and programmed by physicists
- 2020+ back to monolithic structure for computatationally intensive parts of the code? predictable program flow? process specific programs?

Conclusion 0000

Code structure: example SHERPA

- most physics modules reside in shared libraries loaded dynamically at run time
 - base classes defining interface functionalities reside in SHERPA
 - ME, PS, PDFs, etc. loaded at run time
- same technology also used for key user definable functions:
 - scale definitions
 - phase space cuts
 - ...
 - \rightarrow customisable by user without needing to touch or recompile SHERPA

Run strategy: example SHERPA

- 1) initialisation
 - write matrix elements source code (AMEGIC)
 - write databases with list of existing processes and mapping information (AMEGIC/COMIX)

2) integration

- load matrix elements
- determination of relative cross section of all subprocs
- optimisation of phase space channels
 - \rightarrow make weights as uniform as possible
- store in database

3) event generation

- load matrix elements
- read phase space channel parameters
- generate events

Run strategy: example SHERPA

1) initialisation

- write matrix elements source code (AMEGIC)
- write databases with list of existing processes and mapping information (AMEGIC/COMIX)

2) integration

- load matrix elements
- determination of relative cross section of all subprocs
- optimisation of phase space channels
 - \rightarrow make weights as uniform as possible
- store in database

3) event generation

- load matrix elements
- read phase space channel parameters
- generate events

Run strategy: example SHERPA

1) initialisation

- write matrix elements source code (AMEGIC)
- write databases with list of existing processes and mapping information (AMEGIC/COMIX)

2) integration

- load matrix elements
- determination of relative cross section of all subprocs
- optimisation of phase space channels
 - \rightarrow make weights as uniform as possible
- store in database

3) event generation

- load matrix elements
- read phase space channel parameters
- generate events

single core

platform independent

results

needs to be done once

Run strategy: example SHERPA

1) initialisation

- write matrix elements source code (AMEGIC)
- write databases with list of existing processes and mapping information (AMEGIC/COMIX)

2) integration

- load matrix elements
- determination of relative cross section of all subprocs
- optimisation of phase space channels
 - \rightarrow make weights as uniform as possible
- store in database

3) event generation

- load matrix elements
- read phase space channel parameters
- generate events

single core

MPI parallisable

linear scaling up to few thousand cores

Run strategy: example SHERPA

1) initialisation

- write matrix elements source code (AMEGIC)
- write databases with list of existing processes and mapping information (AMEGIC/COMIX)

2) integration

- load matrix elements
- determination of relative cross section of all subprocs
- optimisation of phase space channels
 - \rightarrow make weights as uniform as possible
- store in database

3) event generation

- load matrix elements
- read phase space channel parameters
- generate events

single core

single core MPI parallisable but no benefits

needs to be done once results platform independent

General event generator frameworks 000000000	Code structure 0000	Conclusion •000

Conclusions

• matrix elements

unweighting is the bottleneck

- high complexity of the integrand (large memory requirements)
- poor understanding of its structure (unweighting efficiency) (machine learning currently does not seem to be the answer)
- $\rightarrow\,$ nonetheless, compared to other fields we need relatively few evaluations of the integrand, but one evaluation is complex
- parton showers & non-perturbative modeling currently fine (small part of the overall computational budget)
 - may need attention when improvements lead to large weight spread

code structure

not compatible with currently favoured computing infrastructure

- trying to make computers do physics, not exploit their strength
- too many run-time decisions
- any theory code is essitially a prototype

General event generator frameworks	Code structure	Conclusion
00000000	0000	0000

Backup

Conclusion

Code performance

LO merging using COMIX

Process W^-+	0j	≤ 1 j	≤2j	≤3j	≤4j
RAM Usage	39 MB	44 MB	49 MB	64 MB	173 MB
Initialization time	< 1s	< 1s	3s	22s	7m 7s
Startup time	< 1s	< 1s	< 1s	$<\!\!1s$	2s
Integration time	25s	3m 19s	34m 8s	3h 12m	2d 17h
10k weighted evts	3m 24s	3m 51s	4m 2s	4m 4s	4m 21s
10k unweigthed evts	3m 20s	4m 39s	11m 47s	35m 54s	4h 3m

NLO merging using AMEGIC+BLACKHAT/COMIX (S/H-events)

Process W^-+	0j	≤ 1 j	≤2j
RAM Usage	51 MB	112 MB	572 MB
Initialization time	1s	20s	4m бs
Startup time	< 1s	2s	18s
Integration time	20m 48s	4h 45m	5d 23h
10k weighted evts	3m 58s	4m 38s	6m 48s
10k unweighted evts	4m 14s	4h 8m	24h 54m

On dual 8-core Intel[®] Xeon[®] E5-2660 @ 2.20GHz using MPI parallelisation, timings quoted cumulative.

Conclusion

Code performance

LO merging using COMIX

Process W^-+	0j	≤ 1 j	≤2j	≤3j	≤4j
RAM Usage	39 MB	44 MB	49 MB	64 MB	173 MB
Initialization time	< 1s	< 1s	3s	22s	7m 7s
Startup time	< 1s	< 1s	< 1s	< 1s	2s
Integration time	25s	3m 19s	34m 8s	3h 12m	2d 17h
10k weighted evts	3m 24s	3m 51s	4m 2s	4m 4s	4m 21s
10k unweigthed evts	3m 20s	4m 39s	11m 47s	35m 54s	4h 3m

NLO merging using AMEGIC+BLACKHAT/COMIX (S/H-events)

Process W^-+	0j	≤ 1 j	≤2j	
RAM Usage	51 MB	112 MB	572 MB	
Initialization time	1s	20s	4m 6s	
Startup time	< 1s	2s	18s	
Integration time	20m 48s	4h 45m	5d 23h	bottleneck, steps taken to
10k weighted evts	3m 58s	4m 38s	6m 48s	reduce this look promising
10k unweighted evts	4m 14s	4h 8m	24h 54m	factor 10 improvements seem feasible

On dual 8-core Intel[®] Xeon[®] E5-2660 @ 2.20GHz using MPI parallelisation, timings quoted cumulative.

Conclusion

Changing scales and PDFs/ $\alpha_s(m_Z)$

- on-the-fly scale and PDF variations for ME part
 - \rightarrow use named weights in HEPMC (available since HEPMC 2.06)
- two avenues:
 - 1) output weights for predetermined alternative scale, PDF, $\alpha_s(m_Z)$
 - + number of weights grows linearly with requested variations
 - possible variations fixed at generation time
 - \rightarrow used currently by LHC experiments
 - 2) output coefficients
 - + arbitrary a posteriori variations possible
 - \pm number of scales, parameters & coefficients dependent on type of event and multiplicity, e.g.