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General event generator frameworks

® hard scattering
® (mostly) constant program flow
® evaluation of very large expressions
® |arge memory requirements
few GB for e.g. V +2j @ NLO
® challenge: generate good weight
distribution in finite time

® parton showers

multiple interactions

hadronisation

hadron decays

® mostly Markov Chain techniques

highly variable program flow
generally small expressions
low memory requirements,
largest are typically the hadron decay tables

I
Marek Schénherr Computing challenges for Monte-Carlo event generators 4/16




Code structure Conclusion

General event generator frameworks
0000 0000

0O0@000000

Matrix elements
® ideal weight distribution: uniform weights

® when all events contribute the same to any given observable, the
fewest events are needed to reach a given statistical prowess of a

sample
= unweighted events

Parton showers and non-perturbative event phases
® generally set up to generate unweighted distributions through
probabilistic implementations

Timings
® Example: V + jets @ LO and NLO in SHERPA
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Timing distribution: NLO merging using BlackHat
Weighted W+<0..2j@NLO Unweighted W+<0..2j0NLO

¢ @Q’:}'\@% 65\60(«"' ;00(\’.000(9 NLO MEs and matching
r}&\ \,O&q}(’ fo(’/go 0{\\?’6'2»(’ dominated by CKKW clustering in H events,
SO DRSO cf. slide 12
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Weight distributions

LO weight distribution Unweighting
1ed T T T T T T
e ® hit-and-miss against
leledl) f . .
et o : maximum of weight
distribution

o if "max” is artificially
lowered (or event
beyond “max”
encountered)
evts must acquire rel.
weight wrt. set “max”

#Points

1e2

et 2 L
1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 Te-4 1e-3

Weight [1/GeV?]

® higher multiplicity — wider weight distribution
= worse unweighting efficiency
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Weight distributions

NLO weight distribution Unweighting
1ed T - T T T T T . . .
et L ® hit-and-miss against
et - maximum of weight

iesveijj(H

distribution

e if "max” is artificially
lowered (or event
beyond “max”
encountered)
evts must acquire rel.
weight wrt. set “max”

1e3

#Points

1e2

1el o =
1e-10 1e9 1e8 167 1e6 Tet

Weight [1/GeV?]

® higher multiplicity — wider weight distribution
= worse unweighting efficiency
® bad unweighting efficieny at NLO dominated by H events
= performance limited by unweighting efficiency
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V plus multijet production

SHERPA+PYTHIA
. 105 2
pp— V+0,...,9jets —za §
10+ — 2y 42
® generate unweighted events i o
on large clusters i
. H
® memoryv is bottleneck
§ 0%
I : o
g S
g Zetiets, LHCOUTeY |2 Joe
El pr; > 20GeV, ;| <6 “ . . . .
£ L0, uwighiod ovgen number of trials in unweighting
3 Wesk tn everts
g Cray Aries, 5.625 - 45 TB/s.
= 155 GB PR 2133 M . .
® write HDF5 files (MPI comp.)
Al ® process w/ parton shower,
1 2 4 8 16 32 64 .
Nodes large memory requirements
MP1 scaling up to 64x32 cores for creating CKKW histories
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Improvements throught machine learning

Phase space sampling / un- 10! J_,J—.\H — Unitorm |
iohti . —— Veans |
weighting g 1 ﬁ T nas
e replace old-school 1D A T h
machine learning algoirthms Z 1072 o
> 59 < L
(VEGAS) by multivariate / g 10 T
NN techniques Rl [ T
. .. S -
® many tries, promising on toy =0
examples 107 i
Bendavid arXiv:1707.00028 10-2 10-1 100 10! 102
Klimek, Perelstein arXiv:1810.11509 w
Otten et.al arXiv:1901.00875
g —3g
® realistic implementation in improvements only for cases that
working event generator need no improvements, worse than

Bothmann et.al arXiv:2001.05478 VEGAS for bottleneck cases
Gao et.al arXiv:2001.10028 not smart enough yet?
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Improvements throught machine learning

Phase space sampling / un- ) A | — Unitorm
. 0 10 o -
weighting . rrr ;m{h [
£ 107! .
e replace old-school 1D Z |_|J ff;?r t:"LI_LL
machine learning algoirthms 2 g
(VEGAS) by multivariate / 2 10 h
) 2 1.0 15 .0
NN techniques E 004 S . 1'1
. .. =} 1
® many tries, promising on toy = o farf\ki‘lhh ! LL
examples ‘ 1, |1
Bendavid arXiv:1707.00028 02 10-1 100 ot 102
Klimek, Perelstein arXiv:1810.11509
Otten et.al arXiv:1901.00875
gg — 48
e realistic implementation in improvements only for cases that
working event generator need no improvements, worse than

Bothmann et.al arXiv:2001.05478 VEGAS for bottleneck cases
Gao et.al arXiv:2001.10028 not smart enough yet?
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Additional sources for degredation of statistical power

Negative weights
® NLO matching methods (to var. degree) introduce neg. weights

Negg = N (1 — 2f)?
e typically arise as correction for previous overestimate

= neg. weighted events must be kept to minimum

Parton shower weights
® parton showers operate at LO and leading colour, such that all
splitting functions positive definite
® corrections beyond introduce weights
— spoil hard-won uniform weights of unweighted ME configurations
first ideas for improvements, eg. resampling Olson et.al arXiv:1912.02436
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® 3000 BC — 2000 one monolithic fortran file with a handful of
common blocks
— limited capabilities, no maintainability, no user customisability
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® 3000 BC — 2000 one monolithic fortran file with a handful of
common blocks
— limited capabilities, no maintainability, no user customisability

® 2000-2020 object orientated code design, typically in C++
— vastly extended capabilities, multi-author maintenance,
highly customisable
- one code that can calculate all processes using the same methods,
code-generating code

- dynamic library loading (on demand)
- plenty of casting operations, virtual table look-ups
- dynamic memory allocation: object sizes not clear at compile time
- designed and programmed by physicists
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® 3000 BC — 2000 one monolithic fortran file with a handful of
common blocks
— limited capabilities, no maintainability, no user customisability

® 2000-2020 object orientated code design, typically in C++
— vastly extended capabilities, multi-author maintenance,
highly customisable
- one code that can calculate all processes using the same methods,
code-generating code

- dynamic library loading (on demand)
- plenty of casting operations, virtual table look-ups
- dynamic memory allocation: object sizes not clear at compile time
- designed and programmed by physicists

® 2020+ back to monolithic structure for computatationally intensive
parts of the code? predictable program flow? process specific
programs?
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Code structure: example SHERPA
® most physics modules reside
in shared libraries loaded
dynamically at run time
matrix elements parton showers L.
- base classes defining
AMEGIC CSSHOWER . B o,
ourx L .| Dme interface functionalities
external S p—— | . .
SHERPA reside in SHERPA
. - ME, PS, PDFs, etc.
base
QED corrections classes mult. interactions| |Oaded at run tlme
l—<— interfaces —»—
o e A e B
rorens Uetracture e ® same technology also used for
helper . .
objects key user definable functions:
hadron decays [ <] hadronisation _ SCaIe definitions
HADRONS AHADIC —
interface to interface to phase space cuts
PYTHIA decays Lund model -

event outpnt — customisable by user
Lore e - without needing to touch

or recompile SHERPA
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Run strategy: example SHERPA

1) initialisation
- write matrix elements source code (AMEGIC)
- write databases with list of existing processes
and mapping information (AMEGIC/COMIX)
2) integration
- load matrix elements
- determination of relative cross section of all subprocs
- optimisation of phase space channels
— make weights as uniform as possible
- store in database

3) event generation

- load matrix elements
- read phase space channel parameters
- generate events
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Run strategy: example SHERPA

1) initialisation
- write matrix elements source code (AMEGIC)
- write databases with list of existing processes
and mapping information (AMEGIC/COMIX)

single core

2) integration
- load matrix elements
- determination of relative cross section of all subprocs
- optimisation of phase space channels
— make weights as uniform as possible
L - store in database

needs to be done once
results platform independent

3) event generation
- load matrix elements
- read phase space channel parameters
- generate events
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Run strategy: example SHERPA

- -
wé 1) initialisation
g S - write matrix elements source code (AMEGIC) single core
o _g.)' - write databases with list of existing processes
-§ = and mapping information (AMEGIC/COMIX) ]
B €| 2) integration

o .
EE - load m:atmf elements . . MPI parallisable
"o - determination of relative cross section of all subprocs | |inear scaling up to
g 8 - optimisation of phase space channels few thousand cores
€32 — make weights as uniform as possible

gL - store in database .

3) event generation

- load matrix elements
- read phase space channel parameters
- generate events
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Run strategy: example SHERPA

- -
G| 1) initialisation
o2 . .
S S - write matrix elements source code (AMEGIC) single core
o _g)' - write databases with list of existing processes
_§ = and mapping information (AMEGIC/COMIX) ]
B €| 2) integration
o .
3E - load matrix elements MPI parallisable
o = - determination of relative cross section of all subprocs | |inear scaling up to
o8 - optimisation of phase space channels few thousand cores
€32 — make weights as uniform as possible
gL - store in database .
3) event generation single core
- load matrix elements MPI parallisable
- read phase space channel parameters but no benefits
- generate events _
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Conclusions

® matrix elements
unweighting is the bottleneck
- high complexity of the integrand (large memory requirements)
- poor understanding of its structure (unweighting efficiency)
(machine learning currently does not seem to be the answer)
— nonetheless, compared to other fields we need relatively few
evaluations of the integrand, but one evaluation is complex

® parton showers & non-perturbative modeling
currently fine (small part of the overall computational budget)

- may need attention when improvements lead to large weight spread
® code structure
not compatible with currently favoured computing infrastructure

- trying to make computers do physics, not exploit their strength
- too many run-time decisions
- any theory code is essitially a prototype
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Code performance
LO merging using COMIX

Process W™+ 0j <1j <2j <3j <4j

RAM Usage 39 MB 44 MB 49 MB 64 MB 173 MB
Initialization time <1s <1s 3s 22s m 7s
Startup time <ls <l1s <ls <ls 2s

Integration time 25s 3m19s 34m 8 3h 12m  2d 17h
10k weighted evts 3m 24s 3m 5ls  4m 2s 4m 4s 4m 21s
10k unweigthed evts 3m 20s 4m 39s 11m 47s 35m 54s  4h 3m

NLO merging using AMEGIC+BLACKHAT/CoMix (S/H-events)

Process W—+ 0j <lj <2j
RAM Usage 51 MB 112 MB 572 MB
Initialization time 1s 20s 4m 6s
Startup time <ls 2s 18s
Integration time 20m 48s 4h 45m  5d 23h
10k weighted evts 3m 58s 4m 38s  6m 48s
10k unweighted evts  4m 14s 4h 8m  24h 54m
y ® ® Fs_ i i
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Code performance
LO merging using COMIX

Process W™+ 0j <1j <2j <3j <4j
RAM Usage 39 MB 44 MB 49 MB 64 MB 173 MB
Initialization time <l1s <ls 3s 22s m 7s
Startup time <ls <l1s <ls <ls 2s
Integration time 25s 3m19s 34m 8 3h 12m  2d 17h

10k weighted evts 3m 24s 3m 5ls  4m 2s 4m 4s 4m 21s
10k unweigthed evts 3m 20s 4m 39s 11m 47s 35m 54s  4h 3m

NLO merging using AMEGIC+BLACKHAT/CoMix (S/H-events)

Process W—+ 0j <lj <2j
RAM Usage 51 MB 112 MB 572 MB
Initialization time 1s 20s 4m 6s
Startup time <ls 2s 18s
Integration time 20m 48s 4h 45m  5d 23h bottleneck, steps taken to
10k weighted evts 3m 58s 4m 38s  6m 48s reduce thl.s look promising
10k unweighted evts  4m 14s  4h 8m <24h 54 factor 10 improvements
- B o . : seem easible
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Changing scales and PDFs/as(my)

® on-the-fly scale and PDF variations for ME part

— use named weights in HEPMC (available since HEPMC 2.06)
® two avenues:

1) output weights for predetermined alternative scale, PDF, as(mz)

+ number of weights grows linearly with requested variations

— possible variations fixed at generation time

— used currently by LHC experiments

output coefficients

+ arbitrary a posteriori variations possible

+ number of scales, parameters & coefficients dependent on
type of event and multiplicity, e.g.

V +0j@LO 6 (type, B, O(as), O(a), pr, itF)
V+4j0LO up to 37  (as above + PDF wgt. from merging)
V +2j @ NLO (S) up to 90  (as above + comp. of S event)
V +2j @ NLO (H) wupto 158 (as above + comp. of H event)
number much lower on avarage, as often many components zero

— need generator-specific lib to recombine into weights

— used in eg MCGRID
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