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Future Simulation Needs
[LHCb-FIGURE-2019-018]
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Simulation Strategy

▸ Projected CPU usage is too high for Upgrade and Upgrade II era

▸ Must actively pursue other simulation options

▸ Reminder: LHCb simulation sequence

Generation
Simulation

Gauss

Digitization
Boole

Trigger
Moore

Reconstruction
and Analysis

Generation

Pythia/POWHEG/...

Decay

EvtGen ...

Propagation/Interaction

Geant4

▸ Efforts to speed up all portions ongoing
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Generation Phase
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▸ Highly modular generation phase →
support the large physics programme
of LHCb

▸ Incoporated in LHCb software, which
is built around Gaudi Algorithms
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Opportunity: Generation Speedups

▸ D. Konstantinov - run Valgrind on Pythia → discovered many issues
▸ Many lexical cast calls to PDF sets
▸ Elimination of these + other improvements give large gain in speed for LHCb

Simulation

30% gain in
generator speed
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Opportunity: Forced Hadronization (With thanks to P. Ilten)

▸ At LHCb, most common method is to
generate min bias events until signal
decay is found

▸ Look at all existing signal files, ask
how many signal per minimum bias
event

▸ Using forced hadronization, would get
1/multiplicity speedup

▸ On average, could gain 2.7×104 in
timing
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Opportunity: Multithreading with Gaussino LHCb-PROC-2019-010

▸ Future of LHCb simulation: Gauss on
Gaussino

▸ Core principles of Gaussino
▸ LHCb independent core framework
▸ Build on modularity of Gauss
▸ Incorporate task-based parallelism of

Gaudi
▸ Interface to Geant4 and Pythia8

▸ First developments show promising
results

▸ 2016 LHCb Conditions before
previous slide’s improvements

▸ Blue: Shared Pythia 8 configuration
▸ Orange: Thread local Pythia8

configuration
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ReDecay Eur. Phys. J. C (2018) 78:1009

▸ Goal: use more efficiently CPU used per event
▸ Method: split particles into two groups: those involved

in signal process and those from the rest of the event
▸ Generate MC event, store signal origin and momentum
▸ Remove signal and decay products, pass rest of event

through the simulation framework
▸ Generate signal decay, merge with rest of the event
▸ Repeat previous step NReDecay times

▸ Spend O(90%) time simulating signal

▸ Independent of Generator

▸ Note: Only useful for generating specific signals

PV

K−

π+

K−

π+
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The Adoption of ReDecay LHCb-FIGURE-2019-017
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▸ Over the past year, ReDecay has been validated and adopted by Physics WGs

▸ 10-50× faster → able to generate MC for analyses requiring high statistics samples
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Simulation Phase

Event Generation 
primary event generator 
specialized decay package 
pile-up generation 

Detector Simulation 
geometry of the detector (LHCb ! Geant4) 
tracking through materials (Geant4) 
hit creation and MC truth information (Geant4 ! LHCb) 
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Fig. 1. Structure of the Gauss software

1) Initialization: This step mainly deals with the configu-
ration of the algorithm which is obtained from “configurables”
[8], i.e. special python classes built from the C++ components
(Services, Algorthms, Tools) which compute from user inputs
the value of the parameters to be used for the generation.
These values can be for example the energy of the proton beam
to consider for the generation, since the LHC can operate at
various center-of-mass energies (for example 900 GeV, 7 TeV
or 14 TeV), or the crossing angle between the beams.

2) Event loop execution: The result of this step is the
generation of one physics event corresponding to the criteria
defined at the initialization (for example events containing a
b quark). The generated event is stored in HepMC format [9]
and is then transferred to the simulation step, as illustrated in
Fig. 1. It can optionally be saved on a POOL output file [10]
to be analyzed in detail later.

In order to realize all computations needed for the gener-
ation of one event, several tools are called by the execute
method of the algorithm responsible for the generation of
physics events. Each tool has a generic interface and several
concrete implementations, which are chosen depending on the
configuration of the algorithm. This choice of generic tools
allows to substitute easily inside the algorithm a method by
another one. For example, the generation of beam parameters
is usually describing the head-on collision of two proton beams
but can be substituted by the description of the collision of
one proton beam with one gas molecule in order to simulate
beam-gas events. All available tools will be decribed in detail
in II-B.

3) Finalization: Monitoring counters are printed at this
stage. They allow to count the efficiency of the various
generator-level selections applied during the event generation,
and to know the cross-sections of the generated processes.
These counters are available from the log files of the produc-
tion simulation jobs. A script extracts from these log files the
interesting information and computes numerical results which
are available in web pages for the physicists analysing the
simulated data.

The generation algorithm also accesses generic LHCb com-
mon services. A random generator service provides all tools
and algorithms with a common random number generator,
including external libraries which are interfaced in such a way
that their internal random number generator is replaced by
the one of the service. In order to ensure that any event in

a sequence of events can be reproduced without generating
all preceding events, the random generator seed is set before
generating every new event. The seed is set according to a
unique combination of integers (run and event numbers) which
identify uniquely each event.

A particle property service is used to define properties of
particles (mass, lifetime, spin, charge and width). This ensures
that all LHCb software (including also the reconstruction and
the analysis applications) use the same particle properties.
The source of data for the particle properties is the review
of particle physics of the Particle Data Group (PDG) [11].

B. Tools for the generation algorithm

The algorithm described in Sec. II-A calls various tools to
realize specific computations.

1) Production Tool: It takes care of the primary pp collision
generation: hard process, evolution of the partons up to the
formation of hadrons, generation of multiple parton-parton
interactions. This is usually realized calling an external gene-
rator, such as the general purpose event generators PYTHIA
6 [4], PYTHIA 8 [12], HERWIG [13], Herwig++ [14] or
SHERPA [15]. In this case, the tool is an interface to the
generator (which can be either written in FORTRAN or in
C++ language). The tool also provides the possibility to
configure the external generator in various ways, transferring
the configuration commands given by the Gauss user through
configurable settings of the tools into the format needed by
the external generator. The main external generator used is up
to now PYTHIA 6, whose interface in Gauss will be detailed
in Sec. III.

Other implementations of the “Production Tool” are pro-
vided in Gauss for specific purposes: an interface to
BCVEGPY [16] for the production of the Bc meson and an
interface to HIJING [17] for the simulation of beam-gas events
for example. The possibility to use text files as production
engines is also provided, either containing fully generated
events, or containing parton level events to be hadronized by
another generator. The supported file format are the HepMC
ASCII file format or PYTHIA Les Houches Event (LHE) files
[18].

2) Decay Tool: It is used to decay hadrons produced by the
“Production Tool”. The primary event generation stops after
the hadronization, and then delegates to the decay tool the
generation of decays. Because the LHCb experiment focuses
on flavour physics and in particular B physics, it needs a
very detailed simulation of B decays, taking into account CP
violation effects or angular correlations in decay chains. The
EvtGen generator [5] is very well suited for this purpose since
it was developed at CLEO and BABAR, experiments also
devoted to B physics. The use of EvtGen in LHCb will be
described in detail in Sec. IV.

The SHERPA generator is also interfaced to Gauss as a
“Decay Tool” since it also provides the possibility to imple-
ment detailed description of decay properties. One important
task of the “Decay Tool” is to generate signal decay, i.e. to
force the “signal” particle to decay into the decay mode of
interest. This allows Gauss users to obtain samples containing

▸ After simulation phase, events are passed in the same sequence to the propagation
through material
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Timing of Detector Simulation

▸ Use LHCbPR framework to assess the timing per event for detailed simulation

LHCbPR Timing

Timing for Simulation
dominated by ECAL,

then RICH
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Calorimeter fast simulation: Point Library EPJ Web Conf. 214 (2019) 02040

▸ Idea: Provide a fast simulation option
which automatically replaces Geant4
hits with a hit collection from library,
as a function of discrete E , θ, φ
“nodes”

▸ Not a collection of cell images, but
rather energy deposit in smaller
points, hence called “point library”

▸ Timing for lookup and transformation
of points negligible

6

EPJ Web of Conferences 214, 02040 (2019) https://doi.org/10.1051/epjconf/201921402040
CHEP 2018

agreement with the full simulation does not worsen, proving that the idea behind the point
library works.

The hits for particles with values of E and θ not coinciding with a library node can be
obtained by correcting the points belonging to the closest node. This will be part of the
next development steps. Preliminary tests indicate a gain of about 20 in the computing time
required to simulate O(1) GeV photons in the calorimeter using the point library, compared
to the Geant4-based simulation.

Figure 3. Comparison of photons simulated with Geant4 ("Full simulation") and with the point libraries
("Fast simulation"). Details are given in section 4.5.

5 Conclusions

In LHCb there is an ongoing effort to develop fast simulation alternatives to the nominal
detector simulation to face the current and future limitations of CPU resources with respect
to the size of the necessary simulated samples. In the detailed simulation based on Geant4
more than 50% of the CPU time is spent in the calorimeter system. The development of a
faster simulation of the calorimeter based on "point" libraries is underway and the preliminary
results in terms of time gain and simulation accuracy are encouraging.

References

[1] LHCb collaboration, LHCb Upgrade Software and Computing Technical Design Report,
CERN-LHCC-2018-007, LHCb-TDR-017.
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Calorimeter GAN F. Ratnikov,CHEP2019

▸ Use GANs to generate shower image on ECAL face

Fedor.Ratnikov@cern.ch GANs for FastSim at LHCb

LHCb-inspired ECAL Simulation

5

GEANT Simulated

GAN Generated

GEANT Simulated

GAN Generated

log10(cell energy)

log10(cell energy)
▸ While input distributions are well reproduced, higher level variables are not

necessarily → Model needs to know about these
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RICH fast simulation F. Ratnikov,CHEP2019

▸ Learn PID response given only particle
type and kinematics

▸ Based on Cramer GAN, trained on
calibration data
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Ultra-fast parametrized simulation A.D. CHEP2019

▸ “Aggressive” simulation model necessitates 20% ultra-fast parametrized simulation
▸ Existing solution: Delphes

▸ LHCb geometry not naively supported → implemented dipole magnet instead of
torroid

▸ Calorimeter segmentation not cartesian → implemented new calorimeter
segmentation

▸ Interfacing within Gauss required extra steps
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Delphes: the review A.D. CHEP2019

▸ During internal review of the adoption of Delphes, we noted that there were many
duplications and complications of event processing frameworks

▸ The cost/benefit analysis for using Delphes within Gaudi was considered too high
compared to using simple parameterization tools (see next slides)

▸ Non-trivial interfacing
▸ External constraints from both sides for data preparation and timing

▸ We therefore switch to a fully in-house implementation of parameterizations →
Lamarr
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Lamarr Strategy: Tracking and Clusterization A.D. CHEP2019

▸ Propagator redesigned: Propagate MC
particle first to all points of interest,
then smear and apply efficiencies.

▸ Use Inverse Cumulative Method to
sample track info (χ2

track,C
track
ij , fake

track probability...) → mitigates
binning dependence of
parameterization, and large gain in
speed

▸ Calorimeter parameterization ported
from Delphes Card to simple python
lists

HepMC particles
from generator

LamarrPropagator
All propagation of par-
ticles, high level objects

LamarrRecoSummary
Fill other event level

info (nTracks...)

LamarrCaloProto
Cluster calorimeter de-

posits, including spillover

LamarrParticleID
Compute PID using GAN

TES
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Lamarr Stragegy: Charged Particle PID A.D. CHEP2019

▸ Charged particle PID variables in LHCb can
vary with occupancy and other event level
variables not available at ultra-fast simulation
level

▸ Solution: sample non-signal variables (e.g.
nTracks) with random input

▸ Once input defined, use stacked GANs
evaluated in TensorFlow to form PID
information without calorimeter inputs

▸ Limits calls to TensorFlow to once per event

Lamarr TensorFlow
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Physics Validation A.D. CHEP2019,LHCb-FIGURE-2019-017

▸ Use 2016 Data to validate

▸ Example: Λ0
b → Λ+cµ

−νµ, Λc → pK−π+
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Performance A.D. CHEP2019

▸ Run Valgrind with Cachegrind on 50
B0 → K+K−π0(→ γγ) events with both
Delphes and Lamarr setup

▸ Scale call graph such that ParticleGun is
the same

▸ With improvements, Propagation and high
level particle making is now the sliver on
the right hand side of the lowest graph

▸ Future improvements focus on:
▸ Internal TensorFlow memory management
▸ Faster random number generators for

Calorimeter clusterization

Delphes

Lamarr

Scaled to same area

Full Propagation, clusterization
and track parameterization
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Synergies and Conclusions

▸ Simulation is a necessity to physics experiments

▸ The future computing needs of LHCb necessitate fast simulation framework
options

▸ While LHCb simulation is specialized, synergies exist and are important
▸ Generator level improvements → everyone benefits
▸ Geant4 → mixing of detailed detector simulation with parametric simulation and ML

techniques
▸ Ultra-fast simulation is not an HL-LHC problem for LHCb → experience being

gained now
▸ Mix and match solutions should exist

▸ Exploiting synergies will benefit all
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Backup Slides
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CALO Gan Training
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HistSampler
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What LHCb Simulates

▸ For LHCb searches, need to generate
specific decays for specific searches

▸ Example, R(D∗) needs to generate
not only the signal, but also specific
backgrounds

▸ For some analyses, MC stats is the
limiting systematic uncertainty

R(D∗), τ → πππ(π0)
Phys. Rev. Lett.120(2018) 171802

Source δR(D∗−)/R(D∗−)[%]
Simulated sample size 4.7
Empty bins in templates 1.3
Signal decay model 1.8
D∗∗ τ ν and D∗∗

s τ ν feeddowns 2.7
D+

s → 3πX decay model 2.5
B → D∗−D+

s X, B → D∗−D+X, B → D∗−D0X backgrounds 3.9
Combinatorial background 0.7
B → D∗−3πX background 2.8
Efficiency ratio 3.9
Normalization channel efficiency (modeling of B0 → D∗−3π) 2.0
Total uncertainty 9.1
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