

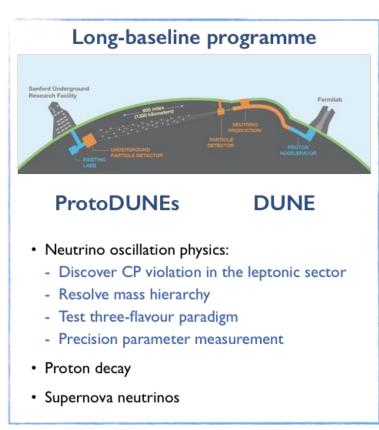
Reconstruction at DUNE

Ben Morgan

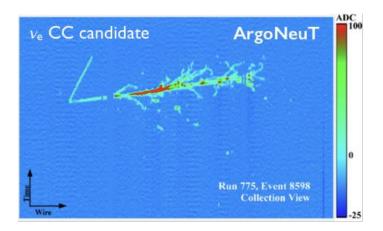
Workshop on Efficient Computing for HEP Edinburgh 17-18 February 2020

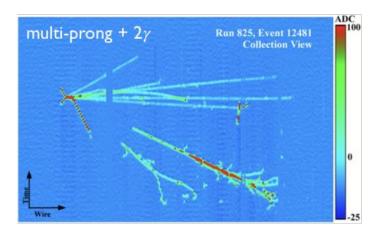
1

DUNE and SBN in a Nutshell


One of the key technologies in the current and future neutrino physics programmes is the Liquid-Argon Time-Projection Chamber (LArTPC)

Short-baseline programme




ICARUS MicroBooNE SBND

- Three LArTPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab
- Main goal is to investigate the potential sterile neutrino signals from LSND and MiniBooNE
- Precision cross-section measurements for neutrino interactions on argon

Why Liquid Argon?

R. Acciari et al, Phys. Rev. D 95, 072005 (2017)

- LArTPC detectors are fully active and fine grain, offering superb spatial and calorimetric resolution:
 - Reconstruction of multi-prong final states.
 - Particle identification:
 - µ/p/K in particle tracks
 - e/γ in electromagnetic showers
- Potential for high efficiency and low backgrounds in most channels
- Scalable to multi-kiloton masses.

LAr TPC data volumes

- The first far detector module will consist of 150 Anode Plane Assemblies (APAs) which have 3 planes of wires with 0.5 cm spacing. Total of 2,560 wires per APA
- Each wire is read out by 12-bit ADC's every 0.5 microsecond for 3-6 msec. Total of 6-12k samples/wire/readout.
- Around 40 MB/readout/APA uncompressed with overheads → 6 GB/module/readout
- 15-20 MB compressed/APA → 2-3 GB/module/readout
- Read it out ~5,000 times/day for cosmic rays/calibration
 → 3-4PB/year/module (compressed)

(x 4 modules x stuff happens x decade) =

1 APA – 2,560 channels 150 of these per FD module

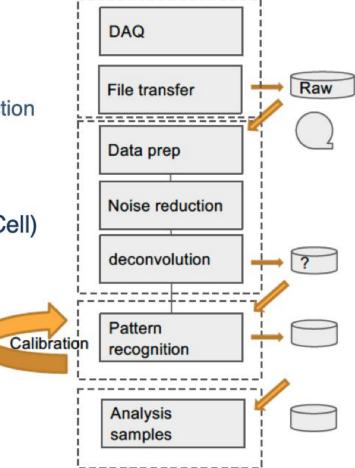
Collaborative Computing Needs for DUNE

Heidi Schellman, CHEP2019, https://indico.cern.ch/event/773049/contributions/3581360/

Data and Event

Sizes

Event size is significant, even compressed!


LAr TPC data processing

- hit finding and deconvolution
 - x5 (ProtoDUNE) -100 (Far Detector) data reduction
 - Takes 30 sec/APA
 - Do it 1-2 times over expt. lifetime
- Pattern recognition (Tensorflow, Pandora, WireCell)
 - Some data expansion
 - Takes ~30-50 sec/APA now
 - Do it ? times over expt.
- Analysis sample creation and use
 - multiple² iterations
 - Chaos (users) and/or order (HPC)

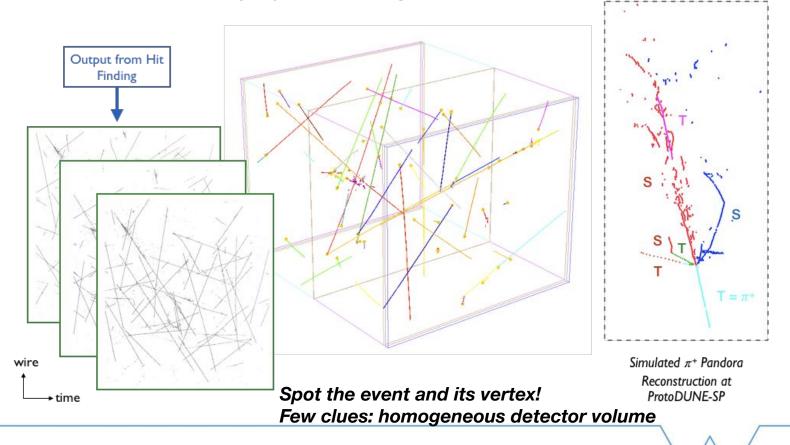
Collaborative Computing Needs for DUNE

Heidi Schellman, CHEP2019, https://indico.cern.ch/event/773049/contributions/3581360/

Data Processing Pipeline

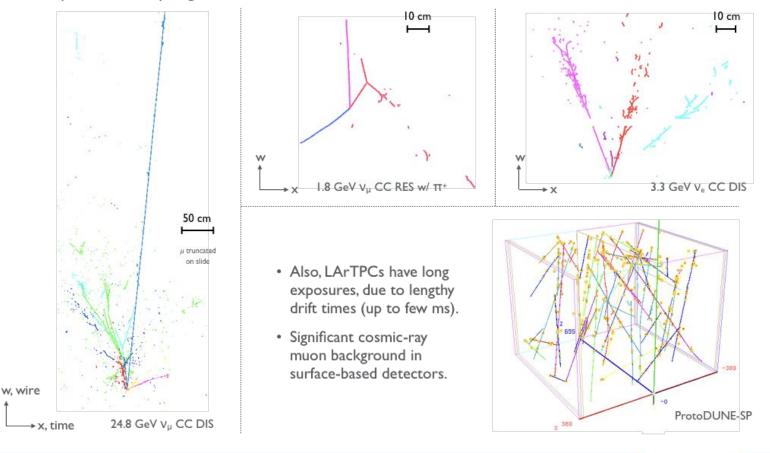
Focus today on the UK Pandora pattern recognition step 5

LArTPC Event Reconstruction

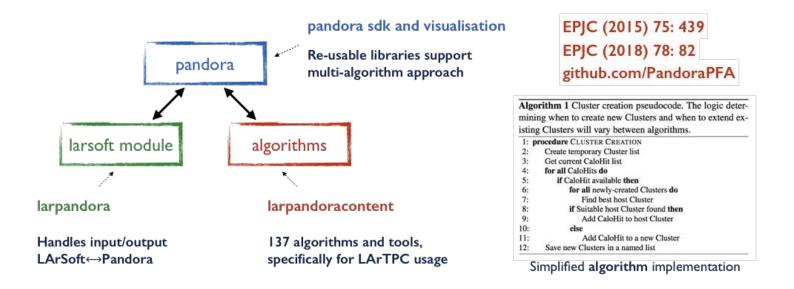

The conversion of raw LArTPC images into analysis-level physics quantities:

- Low-level steps:
 - Noise filtering
 - Signal processing
- Pattern recognition:
 - The bit you do by eye!
 - Turn images into sparse 2D hits
 - Assign 2D hits to clusters
 - Match features between planes
 - Output a hierarchy of 3D particles
- High-level characterisation:
 - Particle identification
 - Neutrino flavour and interaction type
 - Neutrino energy, etc...

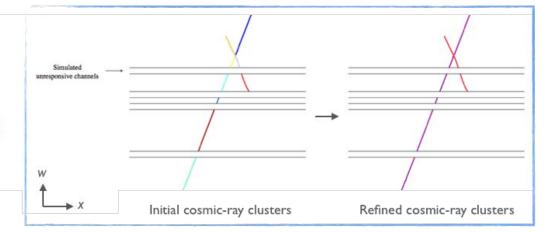
LArTPC Pattern Recognition

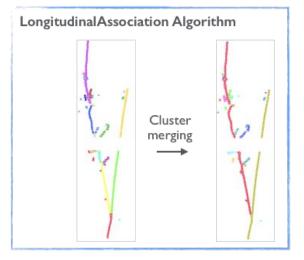

- The main aims of the Pattern Recognition step are to:
 - Produce 3D reconstructed particles, based on inputs of 3 x 2D images.
 - Reconstruct the hierarchy of particles resulting from an interaction.

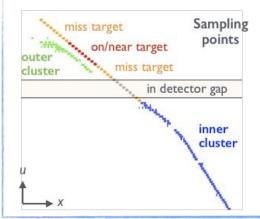
Challenges for Pattern Recognition


It is a significant challenge to develop automated, algorithmic LArTPC pattern recognition

· Complex, diverse topologies:

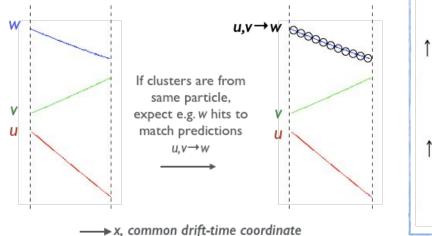

Multi-Algorithm Approach


- Single clustering approach is unlikely to work for such complex topologies:
 - · Mix of track-like and shower-like clusters
- Use Pandora multi-algorithm approach to build up events gradually:
 - Each step is incremental aim not to make mistakes (undoing mistakes is hard...)
 - · Deploy more sophisticated algorithms as picture of event develops
 - · Build physics and detector knowledge into algorithms

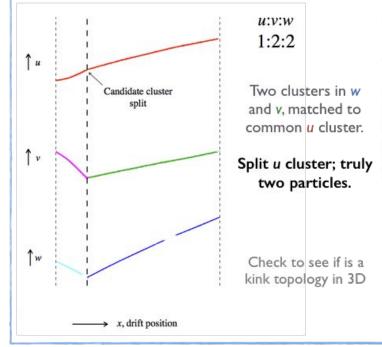


Algorithms: "Traditional"

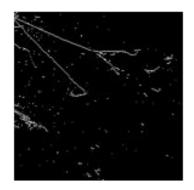
- For each wire plane, create a list of 2D clusters that represent continuous, unambiguous lines of hits:
 - Separate clusters for each structure, with clusters starting/stopping at any branch or ambiguity.

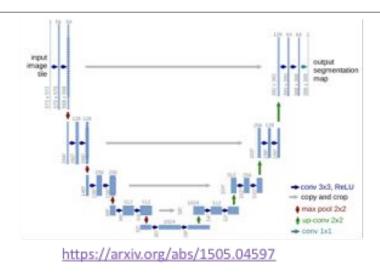


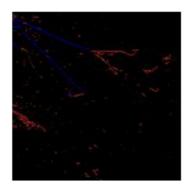
CrossGapsAssociation Algorithm

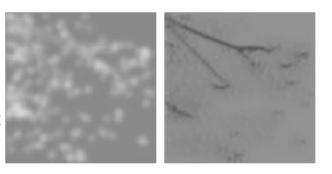

Initial clusters are refined by a series of cluster-merging and cluster-splitting algorithms that use topological info.

Algorithms: Detector Physics


- Our original input was 3x2D images of charged particles in the detector.
- Should now have reconstructed three separate 2D clusters for each particle:
 - Compare 2D clusters from *u*, *v*, *w* planes to find the clusters representing same particle.
 - Exploit common drift-time coordinate and our understanding of wire plane geometry.




- Approach really comes to life when the 2D clustering "disagrees" between wire planes:
 - Automated detection of 2D PatRec issues, with treatment for specific cases, e.g.:


Algorithms: Deep Learning

- U-Net down-samples on the left, up-sample on the right
- Skip connections to fill out up-sampling phase

- Convolution filters identify features
- Track/Shower probability map constructed

"Semantic Segmentation": DL methods can use local context to classify hits

$$\sim$$

Deep Learning Applications

• Feature extraction

- *Hit classification "semantic segmentation"*
 - Also for hit finding
- Vertex Identification
- Particle Identification
- Pandora's multi-algorithm approach provides the framework for developing and refining a mix of traditional ,detector, and deep learning
 - Easy to split initial singular algorithms into multiple
 - Focus algorithms on specific problems, easy to swap in/out new solutions, like deep learning
 - Easy to implement reclustering and iteration

Summary

- DUNE's LArTPC detectors present unique challenges for event reconstruction and physics extraction
 - Large event sizes...
 - ... but not ultimately limited by CPU/storage resources
 - Homogeneous, highly detailed data...
 - ... requiring development of suitable computational methods to extract physics and realize potential
- Pandora's multi-algorithm approach provides framework for blending different techniques
 - Traditional/Detector based
 - Deep Learning
 - Flexibility to add future developments