Lattice QCD thermodynamics

Gergely Endrődi

University of Bielefeld

UNIVERSITÄT BIELEFELD

August 31 - September 03, 2021

Outline overall

- lecture 1: introduction to QCD and thermodynamics
- lecture 2: hot Yang-Mills theory on the lattice
- lecture 3: hot QCD on the lattice
- lecture 4: QCD in extreme conditions on the lattice

Outline lecture 4

- "rest" from lecture 3: Columbia-plot and full QCD EoS
- nonzero density in QCD and on the lattice
- sign problem and workarounds
- imaginary chemical potential

Center symmetry in full QCD

- perturbative effective potential again $\&$ Roberge, Weiss NPB ' 86
- in Polyakov gauge

$$
P=\operatorname{tr} \operatorname{diag}\left(e^{i \varphi_{1}}, e^{i \varphi_{2}}, e^{-i\left(\varphi_{1}+\varphi_{2}\right)}\right)
$$

it is as if we had boundary conditions φ_{i} for the fermions

- in pure gauge theory we had three degenerate minima at

$$
\varphi_{1}=\varphi_{2}=0 \quad \varphi_{1}=\varphi_{2}=2 \pi / 3 \quad \varphi_{1}=\varphi_{2}=-2 \pi / 3
$$

- for fermions this shifts the Matsubara frequencies

$$
\frac{\bar{\omega}_{n}}{T} \rightarrow(2 n+1+0) \pi \quad(2 n+1+2 / 3) \pi \quad(2 n+1-2 / 3) \pi
$$

magnitude of lowest frequency is largest (so det M is largest) for

Center symmetry in full QCD

- perturbative effective potential again $\&$ Roberge, Weiss NPB ' 86
- in Polyakov gauge

$$
P=\operatorname{tr} \operatorname{diag}\left(e^{i \varphi_{1}}, e^{i \varphi_{2}}, e^{-i\left(\varphi_{1}+\varphi_{2}\right)}\right)
$$

it is as if we had boundary conditions φ_{i} for the fermions

- in pure gauge theory we had three degenerate minima at

$$
\varphi_{1}=\varphi_{2}=0 \quad \varphi_{1}=\varphi_{2}=2 \pi / 3 \quad \varphi_{1}=\varphi_{2}=-2 \pi / 3
$$

- for fermions this shifts the Matsubara frequencies

$$
\frac{\bar{\omega}_{n}}{T} \rightarrow(2 n+1+0) \pi \quad(2 n+1+2 / 3) \pi \quad(2 n+1-2 / 3) \pi
$$

magnitude of lowest frequency is largest (so det M is largest) for $\varphi_{1}=\varphi_{2}=0$

Polyakov loop in full QCD

- fermions prefer real Polyakov loops
scatter plot at low T and high T

Dictionary 3.

	Ising model	QCD	
symm. group	$\mathrm{Z}(2)$	$\mathrm{Z}(3)$	$\mathrm{SU}(2)$
sp. breaking	$\langle M\rangle=\frac{\partial \log \mathcal{Z}}{\partial h}$	$\langle P\rangle$	$\left\langle\bar{\psi}_{u} \psi_{u}\right\rangle=\frac{\partial \log \mathcal{Z}}{\partial m_{u}}$
Goldstones	-	-	3
exp. breaking	$h>0$	$m_{u}=m_{d}<\infty$	$m_{u}=m_{d}>0$
symm. restoration	at high T	at low T	at high T

Results: Polyakov loop in full QCD

- fixed N_{t}-approach Q Borsányi et al. JHEP '10

- chiral symmetry restoration at $\approx(155 \pm 15) \mathrm{MeV}$
- deconfinement in roughly same region

Columbia-plot

- full QCD at the physical point has no exact symmetries not quite $\mathrm{SU}(2)$ chirally symmetric because $m_{u}, m_{d}>0$ not quite $\mathrm{Z}(3)$ center symmetric because $m_{f}<\infty$
- order of finite temperature transition as a function of $m_{u}=m_{d}$ and m_{s} : Columbia-plot \& Brown et al. PLB '90

? Cuteri et al. PRD '18

Columbia-plot

- full QCD at the physical point has no exact symmetries not quite $\mathrm{SU}(2)$ chirally symmetric because $m_{u}, m_{d}>0$ not quite $\mathrm{Z}(3)$ center symmetric because $m_{f}<\infty$
- order of finite temperature transition as a function of $m_{u}=m_{d}$ and m_{s} : Columbia-plot \& Brown et al. PLB '90

C Cuteri et al. PRD '18

Equation of state

Integral method in QCD

- remember in pure gauge theory

$$
\log \mathcal{Z}\left(\beta_{1}\right)-\log \mathcal{Z}\left(\beta_{0}\right)=\int_{\beta_{0}}^{\beta_{1}} \mathrm{~d} \beta \frac{\partial \log \mathcal{Z}}{\partial \beta}
$$

- now more parameters: β, m_{f} but they are not independent

$$
\begin{array}{|l|l|}
\hline a(\beta) & m_{f}(\beta) \\
\hline
\end{array}
$$

- therefore
$\log \mathcal{Z}\left(\beta_{1}, m_{f}\left(\beta_{1}\right)\right)-\log \mathcal{Z}\left(\beta_{0}, m_{f}\left(\beta_{0}\right)\right)=\int_{\beta_{0}}^{\beta_{1}} \mathrm{~d} \beta\left[\frac{\partial \log \mathcal{Z}}{\partial \beta}+\sum_{f} \frac{\partial \log \mathcal{Z}}{\partial m_{f}} \frac{\partial m_{f}}{\partial \beta}\right]$
gauge action $\left\langle S_{G}\right\rangle$ as well as condensates $\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle$ enter

Integral method in QCD

- renormalization same as for pure gauge theory

$$
\begin{aligned}
\frac{p^{\mathrm{r}}\left(T_{1}\right)}{T_{1}^{4}}-\frac{p^{\mathrm{r}}\left(T_{0}\right)}{T_{0}^{4}}=\frac{N_{t}^{3}}{N_{s}^{3}} \int_{\beta_{0}}^{\beta_{1}} \mathrm{~d} \beta[& -\left\langle S_{G}\right\rangle_{N_{s}^{3} N_{t}}+\left\langle S_{G}\right\rangle_{N_{s}^{4}} \\
& \left.+\sum_{f}\left(\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle_{N_{s}^{3} N_{t}}-\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle_{N_{s}^{4}}\right) \frac{\partial m_{f}}{\partial \beta}\right]
\end{aligned}
$$

with starting point β_{0} where $p^{\mathrm{r}}\left(T_{0}\right) / T_{0}^{4} \approx 0$

- renormalized interaction measure

$$
\frac{I^{\mathrm{r}}}{T^{4}}=\frac{N_{t}^{3}}{N_{s}^{3}} \frac{a(\beta)}{a^{\prime}(\beta)}\left[\left\langle S_{G}\right\rangle_{N_{s}^{3} N_{t}}-\left\langle S_{G}\right\rangle_{N_{s}^{4}}+\sum_{f}\left(\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle_{N_{s}^{3} N_{t}}-\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle_{N_{s}^{4}}\right) \frac{\partial m_{f}}{\partial \beta}\right]
$$

Integration paths

- integral is independent of integration path

- averaging over different paths Borsányi, Endrödi et al. JHEP '10

Results: equation of state

- most recent results using two different staggered discretizations A Borsányi et al. PLB '14 Q Bazavov et al. PRD '14

- low T: agreement with Hadron Resonance Gas model high T : comparison to Hard Thermal Loop resummed perturbation theory

QCD at nonzero density

Chemical potential in the continuum

- Noether current for $\mathrm{U}_{V}(1)$ symmetry

$$
\psi \rightarrow e^{i \alpha} \psi \quad \partial_{\nu} \bar{\psi} \gamma_{\nu} \psi=0 \quad \hat{N}=\int \mathrm{d}^{3} \mathbf{x} \bar{\psi} \gamma_{4} \psi \quad \frac{\mathrm{~d} \hat{N}}{\mathrm{~d} t}=[\hat{H}, \hat{N}]=0
$$

- canonical path integral

$$
Z_{N}=\operatorname{tr}\left[e^{-\hat{H} / T} \delta_{\hat{N}, N}\right]
$$

- grand canonical path integral

$$
\mathcal{Z}(\mu)=\operatorname{tr} e^{-(\hat{H}-\mu \hat{N}) / T}=\int \mathcal{D} A_{\nu} \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-S_{G}-S_{F}(\mu)}
$$

with

$$
S_{F}(\mu)=S_{F}(0)+\mu \int \mathrm{d}^{4} x \bar{\psi} \gamma_{4} \psi \quad \rightarrow \quad \not D(\mu)=\not D(0)+\mu \gamma_{4}
$$

Grand canonical equation of state

- free energy (density)

$$
F(T, \mu)=-T \log \mathcal{Z} \quad f=\frac{F}{V}
$$

- entropy density

$$
s=-\frac{1}{V} \frac{\partial F}{\partial T}
$$

pressure

$$
p=-\frac{\partial F}{\partial V} \xrightarrow{V \rightarrow \infty}-f
$$

- number density

$$
n=-\frac{1}{V} \frac{\partial F}{\partial \mu}
$$

- energy density

$$
\epsilon-\mu n=-\frac{1}{V} \frac{\partial \log \mathcal{Z}}{\partial(1 / T)}=f+T_{s}
$$

- interaction measure / trace anomaly

$$
I=\operatorname{tr} T_{\mu \nu}=\epsilon-3 p
$$

Chemical potential in the free case

- in the Dirac operator $\partial_{4} \rightarrow \partial_{4}+\mu$
- Matsubara frequencies are shifted $\bar{\omega}_{n} \rightarrow \bar{\omega}_{n}-i \mu$
- same tricks as used at $\mu=0$ lead to

$$
f=-2 \int \frac{\mathrm{~d}^{3} \mathbf{p}}{(2 \pi)^{3}}\left[E_{p}+T \log \left(1+e^{-\left(E_{p}+\mu\right) / T}\right)+T \log \left(1+e^{-\left(E_{p}-\mu\right) / T}\right)\right]
$$

- finite combinations:

$$
f(T, \mu)-f(0,0) \quad \text { or } \quad f(T, \mu)-f(T, 0)
$$

- note: imaginary chemical potentials $\mu=i \theta$ have periodicity

$$
f(\theta)=f(\theta+2 \pi T)
$$

also clear from Matsubara frequencies: $(2 n+1) \pi T+\theta$

Chemical potential on the lattice

Chemical potential on the lattice

- add $\mu \gamma_{4}$ to Dirac operator

$$
\not D=\frac{1}{2} \sum_{\nu} \gamma_{\nu}\left[\underset{\nu}{\longrightarrow}-\stackrel{{ }_{\nu}}{ }\right]+\mu \gamma_{4} .
$$

- in the free case $\left(U_{\mu}=\mathbb{1}\right) \log \operatorname{det} M$ contains divergences
\& Hasenfratz, Karsch PLB '83

$$
\log \operatorname{det} M_{\text {free }}(\mu)=\mathcal{O}\left(a^{-4}\right)+\mathcal{O}\left(m^{2} a^{-2}\right)+\mathcal{O}\left(m^{4} \log a\right)+\mathcal{O}\left(\mu^{2} a^{-2}\right)
$$

so the number density

$$
n=\mathcal{O}\left(\mu a^{-2}\right)
$$

- but in the continuum the number density is finite (0 at $T=0$)

$$
n \propto \Pi_{00}(q=0)=\operatorname{mqu}_{q} \sim \sim_{q}
$$

Chemical potential on the lattice

- add $\mu \gamma_{4}$ to Dirac operator

$$
\not D=\frac{1}{2} \sum_{\nu} \gamma_{\nu}\left[\underset{\nu}{\longrightarrow}-\stackrel{\longleftarrow}{\nu^{\prime}}\right]+\mu \gamma_{4} .
$$

- in the free case $\left(U_{\mu}=\mathbb{1}\right) \log \operatorname{det} M$ contains divergences
\& Hasenfratz, Karsch PLB '83
$\log \operatorname{det} M_{\text {free }}(\mu)=\mathcal{O}\left(a^{-4}\right)+\mathcal{O}\left(m^{2} a^{-2}\right)+\mathcal{O}\left(m^{4} \log a\right)+\mathcal{O}\left(\mu^{2} a^{-2}\right)$
so the number density

$$
n=\mathcal{O}\left(\mu a^{-2}\right)
$$

- but in the continuum the number density is finite (0 at $T=0$)

$$
n \propto \Pi_{00}(q=0)=\operatorname{mun}_{q} \longrightarrow \sim_{q}
$$

did we violate gauge invariance?

Chemical potential on the lattice

- imaginary chemical pot. as 4th component of $\mathrm{U}(1)$ gauge field

$$
\not D+i \theta \gamma_{4}=\not D+i \mathcal{A} \quad \mathcal{A}_{\nu}=\theta \delta_{\nu 4}
$$

- just like gluon field, via parallel transporters © Hasenfratz, Karsch PLB '83

$$
u_{\mu}=\exp \left(i \mathcal{A}_{\mu}\right) \in \mathbb{U}(1)
$$

- multiplying the $\mathrm{SU}(3)$ links (imaginary μ)

$$
D D=\frac{1}{2} \sum_{i} \gamma_{i}\left[\underset{i}{\longrightarrow}-\longleftarrow_{i}\right]+\frac{1}{2} \gamma_{4}\left[\frac{e^{i \theta}}{t}-\stackrel{e^{-i \theta}}{t}\right]
$$

- no μ-dependent divergences in $\log \operatorname{det} M_{\text {free }} \checkmark$

Chemical potential on the lattice

- imaginary chemical pot. as 4th component of $\mathrm{U}(1)$ gauge field

$$
\not D+i \theta \gamma_{4}=\not D+i \mathcal{A} \quad \mathcal{A}_{\nu}=\theta \delta_{\nu 4}
$$

- just like gluon field, via parallel transporters \& Hasenfratz, Karsch PLB '83

$$
u_{\mu}=\exp \left(i \mathcal{A}_{\mu}\right) \in \mathbb{U}(1)
$$

- multiplying the $\mathrm{SU}(3)$ links (real μ)

$$
\not D=\frac{1}{2} \sum_{i} \gamma_{i}[\underset{i}{\longrightarrow}]+\frac{1}{2} \gamma_{4}\left[\underset{t}{e^{\mu}}-\underset{t}{\left.\stackrel{e^{-\mu}}{\stackrel{4}{t}}\right]}\right.
$$

- no μ-dependent divergences in $\log \operatorname{det} M_{\text {free }} \checkmark$

Chemical potential and unitarity

- staggered quarks again
- imaginary chemical potential

$$
D_{n m}=\frac{1}{2 a} \sum_{\nu} \eta_{\nu}(n)\left[U_{\nu}(n) e^{i \theta \delta_{\nu 4}} \delta_{n+\hat{\nu}, m}-U_{\nu}^{\dagger}(n-\hat{\nu}) e^{-i \theta \delta_{\nu 4}} \delta_{n-\hat{\nu}, m}\right]
$$

links still unitary

- real chemical potential

$$
\not D_{n m}=\frac{1}{2 a} \sum_{\nu} \eta_{\nu}(n)\left[U_{\nu}(n) e^{\mu \delta_{\nu 4}} \delta_{n+\hat{\nu}, m}-U_{\nu}^{\dagger}(n-\hat{\nu}) e^{-\mu \delta_{\nu 4}} \delta_{n-\hat{\nu}, m}\right]
$$

forward/backward propagation enhanced/suppressed links not unitary anymore

Sign problem

- now $\{$ forward hopping $\} \neq\{\text { backward hopping }\}^{\dagger}$

$$
\eta_{5} \not D(\mu) \eta_{5}=\not म^{\dagger}(-\mu)
$$

η_{5}-hermiticity is lost $\Rightarrow \operatorname{det} M(\mu) \in \mathbb{C}$

- path integral

$$
\mathcal{Z}=\int \mathcal{D} U[\operatorname{det} M(\mu)]^{1 / 4} e^{-\beta S_{G}}
$$

no probabilistic interpretation anymore

- complex action problem
- actually we know $\mathcal{Z} \in \mathbb{R}$

$$
\mathcal{Z}=\int \mathcal{D} \cup \operatorname{Re}[\operatorname{det} M(\mu)]^{1 / 4} e^{-\beta S_{G}}
$$

- sign problem

Sign problem

- now $\{$ forward hopping $\} \neq\{\text { backward hopping }\}^{\dagger}$

$$
\eta_{5} \not D(\mu) \eta_{5}=\not म^{\dagger}(-\mu)
$$

η_{5}-hermiticity is lost $\Rightarrow \operatorname{det} M(\mu) \in \mathbb{C}$

- path integral

$$
\mathcal{Z}=\int \mathcal{D} U[\operatorname{det} M(\mu)]^{1 / 4} e^{-\beta S_{G}}
$$

no probabilistic interpretation anymore

- complex action problem
- actually we know $\mathcal{Z} \in \mathbb{R}$

$$
\mathcal{Z}=\int \mathcal{D} \cup \operatorname{Re}[\operatorname{det} M(\mu)]^{1 / 4} e^{-\beta S_{G}}
$$

- sign problem
- bonus staggered problem: ambiguous complex rooting

Sign problem - workarounds

- here: brief description of
- reweighting
- analytical continuation from $i \mu=\theta$
- many other approaches
- Taylor expansion in μ around $\mu=0$
- complex Langevin
- Lefschetz thimbles

Reweighting

- determinant is complex

$$
\operatorname{det} M=|\operatorname{det} M| e^{i \phi}
$$

- replace complex weight by real weight

$$
\begin{aligned}
\langle A\rangle & =\frac{\int \mathcal{D} U \operatorname{det} M e^{-\beta S_{G}} A[U]}{\int \mathcal{D} U \operatorname{det} M e^{-\beta S_{G}}}=\frac{\int \mathcal{D} U|\operatorname{det} M| e^{-\beta S_{G}} A[U] e^{i \phi}}{\int \mathcal{D} U|\operatorname{det} M| e^{-\beta S_{G}} e^{i \phi}} \\
& =\frac{\int \mathcal{D} U|\operatorname{det} M| e^{-\beta S_{G}} A[U] e^{i \phi}}{\int \mathcal{D} U|\operatorname{det} M| e^{-\beta S_{G}}} / \frac{\int \mathcal{D} U|\operatorname{det} M| e^{-\beta S_{G}} e^{i \phi}}{\int \mathcal{D} U|\operatorname{det} M| e^{-\beta S_{G}}}
\end{aligned}
$$

- these are phase quenched expectation values

$$
\langle A\rangle=\frac{\left\langle A e^{i \phi}\right\rangle_{\mathrm{pq}}}{\left\langle e^{i \phi}\right\rangle_{\mathrm{pq}}}
$$

- sign problem is solved. Or is it?

Overlap problem

- overlap problem

$$
\left\langle e^{i \phi}\right\rangle_{\mathrm{pq}}=\frac{\mathcal{Z}}{\mathcal{Z}_{\mathrm{pq}}}=\exp \left[-\frac{V}{T}\left(f-f_{\mathrm{pq}}\right)\right]
$$

exponentially small in V

$$
\langle A\rangle \sim \frac{0}{0} \quad \text { for large volumes }
$$

- note
$|\operatorname{det} M(\mu)|=\sqrt{\operatorname{det} M(\mu) \cdot[\operatorname{det} M(\mu)]^{*}}=\sqrt{\operatorname{det} M(\mu) \cdot \operatorname{det} M(-\mu)}$
phase quenched ensemble corresponds to isospin chemical potential setting

$$
\mu_{d}=-\mu_{u}
$$

Analytic continuation

- perform simulations at $\mu^{2}<0$ \& Borsányi et al. PRL '20

Analytic continuation

- perform simulations at $\mu^{2}<0$ Borsányi et al. PRL '20

- fit and analytically continue to $\mu^{2}>0$

Phase diagram

- analytically continue susceptibility peak positions
\& Borsányi et al. PRL '20

Roberge-Weiss transitions

Imaginary chemical potentials

- remember center sectors (Polyakov loop eigenvalues)

$$
\varphi_{1}=\varphi_{2}=0 \quad \varphi_{1}=\varphi_{2}=2 \pi / 3 \quad \varphi_{1}=\varphi_{2}=-2 \pi / 3
$$

shifting the Matsubara frequencies

$$
\frac{\bar{\omega}_{n}+\theta}{T} \rightarrow(2 n+1+\theta+0) \pi \quad(2 n+1+\theta+2 / 3) \pi \quad(2 n+1+\theta-2 / 3) \pi
$$

- magnitude of lowest frequency is largest for:

Imaginary chemical potentials

- remember center sectors (Polyakov loop eigenvalues)

$$
\varphi_{1}=\varphi_{2}=0 \quad \varphi_{1}=\varphi_{2}=2 \pi / 3 \quad \varphi_{1}=\varphi_{2}=-2 \pi / 3
$$

shifting the Matsubara frequencies

$$
\frac{\bar{\omega}_{n}+\theta}{T} \rightarrow(2 n+1+\theta+0) \pi \quad(2 n+1+\theta+2 / 3) \pi \quad(2 n+1+\theta-2 / 3) \pi
$$

- magnitude of lowest frequency is largest for:

$$
\begin{array}{c|c}
-\pi T / 3<\theta<\pi T / 3 & \varphi=0 \\
\hline \pi T / 3<\theta<\pi T & \varphi=-2 \pi / 3 \\
\hline-\pi T<\theta<-\pi T / 3 & \varphi=2 \pi / 3
\end{array}
$$

Roberge-Weiss transitions

- preferred center sectors at nonzero θ

- $f(\theta+2 \pi T)=f(\theta)$ periodicity already in free case
- in QCD $f(\theta+2 \pi T / 3)=f(\theta)$
(only $N \% 3=0$ states allowed) ρ Roberge, Weiss NPB ' 86

Roberge-Weiss transitions

- phase diagram at nonzero θ

Q Roberge, Weiss NPB '86 Czaban et al. PRD '16

- analytical continuation limited by $\theta<\pi T / 3$ at high temperature
- note: ongoing research on RW endpoint

