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̣ Recap 

̣ Regularizations  

̣ Practice problem: photon self-energy 

̣ QCD - Running coupling 

OUTLINE OF LECTURE 1
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Recap of Lecture 1
̣ Not all theories are renormalizable.  

The Standard Model is fully renormalizable 

̣ Theories are developed in the long-standing effort to describe 
physical phenomena.  
Divergences in theoretical calculations are accepted as long as 
there is a systematic way to treat them with a finite number of 
counter terms. 

̣ Renormalization is necessary to connect theoretical results to 
physical quantities 

̣ Two-step procedure:  
- implementation of a regulator (PV, DR, etc) 
- Removal of divergences and dependence on regulator with a 
renormalization scheme (prescription not unique)
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̣ Physical quantities depend on the energy scale of the experimental 
process 

̣ The cutoff Λ is present in the bare calculation, but it is removed from 
renormalized quantities 

̣ In renormalizable theories, the regulator is removed in systematic way

Key Points
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̣ Working in perturbation theory restricts renormalization procedure 
to a given order (n). In such a case: 

 
- Draw all Feynman diagrams up to n-loop (including tree-level) 
 
- Calculate contributions to amplitudes 
 
- Regularize loop integrals. Results will depend on bare parameters and Λ 
 
- Combine the bare parameters and regulator to define the 
  renormalized quantities which are finite. Bare parameters are 
  expressed in terms of measurable quantities 

 
 

 
 

Key Points
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Practice Problem
Photon self-energy

̣ Answer for pole contribution: 
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Practice Problem
Photon self-energy

̣ Calculate the pole in DR 

̣ Based on symmetry properties  
and Ward identities we expect

̣ Answer for pole contribution: 
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Regularization
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Regularizing the theory
Several ways to regularize a theory
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̣ Momentum cutoff:   UV cutoff of momentum, ∫
∞

−∞
dp → ∫

Λ

−Λ
dp

Regularizing the theory
Several ways to regularize a theory



M. Constantinou, EuroPLEx School 2021 21

̣ Momentum cutoff:   UV cutoff of momentum, ∫
∞

−∞
dp → ∫

Λ

−Λ
dp

̣ Pauli-Villar mass regulator: 
Fictitious particle with mass Λ, which makes the integral  convergent 
due to addition of a propagator  which goes to 1 as 

∫
∞

−∞
dp

− Λ2

q2 − Λ2 Λ → ∞
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̣ Dimensional regularization:  
calculation in  dimensions, ,  divergences. 

 not an integer. The dependence on  is removed by renormalization (e.g., )  
introduction of mass-dimension scale, 

D = 4 − 2ϵ ∫ dk4

(2π)4 → ∫ dkD

(2π)D
1
ϵn , (n > 0)

ϵ ϵ MS
g → g μ4 − D

2
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 not an integer. The dependence on  is removed by renormalization (e.g., )  
introduction of mass-dimension scale, 

D = 4 − 2ϵ ∫ dk4

(2π)4 → ∫ dkD

(2π)D
1
ϵn , (n > 0)

ϵ ϵ MS
g → g μ4 − D
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̣ Lattice regularization:  
(discretization of space time without the additional parameters in theory 
   (UV cutoff: ,  ) 

 (IR cutoff: ,  )
∫

∞

−∞
dp → ∫

+π/a

−π/a
dp a−1 a → 0

∫ dpf (p) →
Nmax

∑
n=0

2π
L

F(p0 + 2πn
L

) L−1 L → ∞

Regularizing the theory
Several ways to regularize a theory
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QCD
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QED vs QCD

̣ Description of interaction 
between light and matter 

̣ Types of charge:  

̣ Force mediator: photons 

̣ No photon self-interaction 

̣ Abelian U(1) group 

̣ Charge screening effect 

̣ Mass mechanism: 
dominance of Higgs 
mechanism 
(e.g., Hydrogen mass ~  
mass of e- plus mass of p+)

±

QED QCD
̣ Description of strong interaction 

between quarks and gluons 

̣ Types of color charge: RGB 

̣ Force mediator: gluons 

̣ Gluon self-interaction 

̣ Non-Abelian SU(3) group 

̣ Color anti-screening effect 

̣ Mass mechanism: dominance  
of QCD dynamics 
(e.g., proton mass >> quark mass)
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QCD Lagrangian

̣ Pictorial Representation
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QCD Lagrangian

̣ Pictorial Representation Interaction vertices make QCD  
calculations more complicated  
than QED 

Confinement enforces  
non-perturbative solutions

Review of  Particle Physics (2020)
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Running Coupling -  
Renormalization Group Equation

̣ Assume we calculate a dimensionless physical quantity  in 
perturbation theory. For simplicity,  depends on  and an energy 
scale    ( ), e.g., the energy of scattering process 

̣  is renormalized in some scale , thus  

̣ The physical  must be independent of , that is

%
% αs

Q Q > > 1

% μ % = %( Q2

μ2 , as(μ2))
% μ

RGE
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Running Coupling -  
Renormalization Group Equation

̣ Assume we calculate a dimensionless physical quantity  in 
perturbation theory. For simplicity,  depends on  and an energy 
scale    ( ), e.g., the energy of scattering process 

̣  is renormalized in some scale , thus  

̣ The physical  must be independent of , that is

%
% αs

Q Q > > 1

% μ % = %( Q2

μ2 , as(μ2))
% μ

̣ Any dependence on  should be canceled by an appropriate 
dependence of  on . Frequently, one choses 

μ
αs μ μ2 = Q2

RGE
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Running Coupling -  
Renormalization Group Equation

̣ We define the   function as:β

̣ Practical use of : if  fixed at some scale, this relation can be 
used to evolve results to another scale through RGE

β(αs) αs
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Running Coupling -  
Renormalization Group Equation

̣ We define the   function as:β

̣ Practical use of : if  fixed at some scale, this relation can be 
used to evolve results to another scale through RGE

β(αs) αs

̣  known from perturbation theory with known coefficients:β(αs)
 β(αs) = − β0α2

s − β1α3
s − β2α4

s + %(α5
s )  β0 =

33 − 2Nf

12π

 β1 =
153 − 19Nf

24π2

 β2 =
77139 − 15099Nf + 325N2

f

3456π3
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Running Coupling -  
Renormalization Group Equation

̣ We define the   function as:β

̣ Practical use of : if  fixed at some scale, this relation can be 
used to evolve results to another scale through RGE

β(αs) αs

̣  known from perturbation theory with known coefficients:β(αs)
 β(αs) = − β0α2

s − β1α3
s − β2α4

s + %(α5
s )  β0 =

33 − 2Nf

12π

 β1 =
153 − 19Nf

24π2

 β2 =
77139 − 15099Nf + 325N2

f

3456π3

̣ One-loop approximation for αs

Governs the evolution 
from one energy scale ( )  
to another ( )

μ
Q
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Running Coupling - RGE
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Running Coupling - RGE

̣ For ,  decreases if  .  

This happens for 

Q2 > > μ2 αs(Q2) β0 < 0
Nf < 11NC

2 ≤ 16

Already at 1-loop we see asymptotic freedom:

β0 =
33 − 2Nf

12π
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Running Coupling - RGE

̣ For ,  decreases if  .  

This happens for 

Q2 > > μ2 αs(Q2) β0 < 0
Nf < 11NC

2 ≤ 16

Already at 1-loop we see asymptotic freedom:

β0 =
33 − 2Nf

12π

̣ For , Q2 < < μ2 αs(Q2) → ∞
But also confinement:

̣ 1-loop level:
Crucial parameters of QCD: the energy scale at which  : αs(Q2) → ∞ ΛQCD

 determines the  
non-perturbative region 
 
For , 
  

ΛQCD

Nf = 4
ΛQCD ∼ 300 MeV



M. Constantinou, EuroPLEx School 2021 28

Lattice Regularization

̣ Most regularizations (PV, DR, etc) are perturbative, and 
remove the divergences order by order in perturbation theory 

̣ Advantage of Lattice regularization: non-perturbative.  
Particularly useful for studying the low energy regime of 
QCD, where the hadronic physics is 

̣  Preserves chirality and gauge invariance simultaneously 

̣ The applicability of Lattice QCD can also be perturbative.  
Perturbative renormalization was traditionally used until 
about 10 years ago
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Renormalization on the Lattice

̣ Lattice perturbation theory was extensively used to 
renormalize lattice data of matrix elements of operators, and 
parameters of the QCD Lagrangian in the past 

̣ In 1995 ideas for non-perturbative renormalization have 
been implemented    
[Martinelli et al., Nucl. Phys. B445, 81, arXiv:hep-lat/9411010] 

̣ Currently, non-perturbative renormalization prescriptions are 
mostly used 

̣ Lattice perturbation theory is still a useful tool for several 
reasons
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Renormalization Functions

̣ Renormalization functions (Z-factors) depend on the lattice 
formulation and other parameters of the discretized action 
employed 

̣ Z-factors contain divergent parts as well as finite.  
- The regulator independent divergences are universal  
- Finite parts depend on action parameters  

̣ Unless one studies matrix elements of conserved currents, the 
operators must be renormalized 

̣ Typically, results are converted to a scheme. Convenient 
choice:  scheme, where Wilson coefficients are also 
calculated

MS



M. Constantinou, EuroPLEx School 2021 31

Perturbative Renormalization

̣ In QCD, there are infinite number of interaction vertices.  
 

However, in order-by-order in perturbation theory, only a 
finite number of vertices is needed (vertices are 
accompanied by factors of  the bare coupling constant) 

̣ Lattice QCD perturbation theory is much more complicated 
than continuum QCD perturbation theory: 
 

- more vertices and more diagrams 
 

- expressions for propagators and vertices can become 
  very lengthy
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Perturbative Renormalization

For fermion field

For operator ψ̄Γψ (ZRI
q )−1 Z RI

Γ Tr [GL
Γ(p) Gtree

Γ (p)]
p2=μ2

= Tr [Gtree
Γ (p) Gtree

Γ (p)]
p2=μ2

ZRI
q = 1

12 Tr [(SL)−1(p) Stree(p)]
p2=μ2

RI-MOM scheme
̣ Regularization Independent momentum subtraction  

(RI-MOM) schemes naturally defined in perturbation theory 

̣ Calculation of Green functions of operators at given off-shell 
external states with momentum p 

̣ A condition is applied on the Green functions to match them with 
their tree-level value 

̣ Examples of RI-type conditions:


