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OUTLINE OF LECTURE 1

% Recap
* Regularizations
% Practice problem: photon self-energy

% QCD - Running coupling
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Recap of Lecture 1

* Not all theories are renormalizable.
The Standard Model is fully renormalizable

% Theories are developed in the long-standing effort to describe
physical phenomena.
Divergences in theoretical calculations are accepted as long as
there is a systematic way to treat them with a finite number of
counter terms.

% Renormalization is necessary to connect theoretical results to
physical quantities

* Two-step procedure:
- implementation of a regulator (PV, DR, etc)
- Removal of divergences and dependence on regulator with a
renormalization scheme (prescription not unique)
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Key Points

% Physical quantities depend on the energy scale of the experimental
process

% The cutoff A is present in the bare calculation, but it is removed from
renormalized quantities

% In renormalizable theories, the regulator is removed in systematic way
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Key Points

% Working in perturbation theory restricts renormalization procedure
to a given order (n). In such a case:

- Draw all Feynman diagrams up to n-loop (including tree-level)

- Calculate contributions to amplitudes

- Regularize loop integrals. Results will depend on bare parameters and A
- Combine the bare parameters and regulator to define the

renormalized quantities which are finite. Bare parameters are
expressed in terms of measurable quantities
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Practice Problem

Photon self-energy
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Practice Problem

Photon self-energy
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Regularization
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Regularizing the theory

Several ways to regularize a theory
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Regularizing the theory

Several ways to regularize a theory
A

% Momentum cutoff: UV cutoff of momentum, [ dp - [ dp
—00 —A
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Regularizing the theory

Several ways to regularize a theory
A

% Momentum cutoff: UV cutoff of momentum, [ dp - [ dp
—00 —A

% Pauli-Villar mass regulator:

Fictitious particle with mass A, which makes the integral [ dp convergent
2

due to addition of a propagator —— which goes to 1 as_oj\ — 0

A2
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% Momentum cutoff: UV cutoff of momentum, [ dp - [ dp

Regularizing the theory

Several ways to regularize a theory
A

—A

% Pauli-Villar mass regulator:

Fictitious particle with mass A, which makes the integral [ dp convergent
2

due to addition of a propagator —— which goes to 1 as_oj\ — 0

A2

Dimensional regularization:
,(n > 0) divergences.

dk* J dkP 1
— )

(2r)* Q2r)P " en

¢ not an integer. The dependence on ¢ is removed by renormalization (e.g., MS)

Introduction of mass-dimension scale, g — gu 2

calculation in D = 4 — 2¢ dimensions, [
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Regularizing the theory

Several ways to regularize a theory
A

% Momentum cutoff: UV cutoff of momentum, [ dp - [ dp
—00 —A

% Pauli-Villar mass regulator:

Fictitious particle with mass A, which makes the integral [ dp convergent
2

due to addition of a propagator —— which goes to 1 as_oj\ — 0

A2

% Dimensional regularization:
,(n > 0) divergences.

dk* J dkP 1
— )

(2r)* Q2r)P " en

¢ not an integer. The dependence on ¢ is removed by renormalization (e.g., MS)

Introduction of mass-dimension scale, g — gu 2

calculation in D = 4 — 2¢ dimensions, J

% Lattice regularization:
(discretization of space time without the additional parameters in theory

ro dp - J+ﬂ/adp (UV cutoff: Cl_l, a— 0 )

—rla

Nmax
Jdpf(p) - ZZ—L”F(pO+2”T") (IR cutoff: L=!, L - x)
n=0
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QED vs QCD

QED QCD
Description of interaction % Description of strong interaction
between light and matter between quarks and gluons

Types of charge: =

Force mediator: photons

No photon self-interaction

Abelian U(1) group
Charge screening effect

Mass mechanism:
dominance of Higgs

mechanism
(e.g., Hydrogen mass ~
mass of e- plus mass of p+)

Types of color charge: RGB
Force mediator: gluons
Gluon self-interaction
Non-Abelian SU(3) group

Color anti-screening effect

L D D D S D o

Mass mechanism: dominance
of QCD dynamics

(e.g., proton mass >> quark mass)
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QCD Lagrangian
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QCD Lagrangian
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Interaction vertices make QCD
calculations more complicated

than QED

Confinement enforces
non-perturbative solutions
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Running Coupling -
Renormalization Group Equation

% Assume we calculate a dimensionless physical quantity @ in
perturbation theory. For simplicity, © depends on a, and an energy

scale O (O > > 1), e.g., the energy of scattering process

2
e @ is renormalized in some scale y, thus O = 0 (Q— a (M2)>
p?

% The physical ® must be independent of x, that is

0 - :
de ( -a—‘z I‘Q%?L Cl;)O =0 RGE
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Running Coupling -
Renormalization Group Equation

% Assume we calculate a dimensionless physical quantity @ in
perturbation theory. For simplicity, © depends on a, and an energy

scale O (O > > 1), e.g., the energy of scattering process

2
* @ is renormalized in some scale u, thus 0 = @( < (,uz)>
p?

% The physical ® must be independent of x, that is

0 - :
de ( -a—‘z I‘Q%?L Cl;)O =0 RGE

% Any dependence on i should be canceled by an appropriate
dependence of a, on u. Frequently, one choses ,uz = Q2
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Running Coupling -
Renormalization Group Equation

* We define the f function as: F%%f; = g (A=)

* Practical use of f(a,): if o fixed at some scale, this relation can be
used to evolve results to another scale through RGE
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Running Coupling -
Renormalization Group Equation

* We define the f function as: F%%? = g (A=)

* Practical use of f(a,): if o fixed at some scale, this relation can be
used to evolve results to another scale through RGE

* ﬂ(aS) known from perturbation theory with known coefficients:
33 — 2N,

2 4 5 —
pla,) = — poory — ,510553 — pra + O(a;) ="
153 - 19N;
h=—"Z

77139 — 15099N; + 325N7

pr= 345673
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Running Coupling -
Renormalization Group Equation

* We define the f function as: F.%%% = g (A=)

* Practical use of f(a,): if o fixed at some scale, this relation can be
used to evolve results to another scale through RGE

* ﬂ(as) known from perturbation theory with known coefficients:

33 — 2N
2 4 _ i
pla,) = — poay — ﬂlag) — prog + @(0{95 ) KT
153 19N;
: , =z
% One-loop approximation for a; 77139 — 15099 + 325N?
b= 34567
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Running Coupling -
Renormalization Group Equation

* We define the f function as: F%%f; = g (A=)

* Practical use of f(a,): if o fixed at some scale, this relation can be
used to evolve results to another scale through RGE

* ﬂ(aS) known from perturbation theory with known coefficients:

33 _ 2N
_ 2 3 4 5 — /
fla) = — fyas — pia; — pra; + O(x) b=,
153 - 19N;
_ _ h= 2472
% One-loop approximation for a; 77139 — 15099 + 325N?
= 345677
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Running Coupling - RGE
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Running Coupling - RGE

0@ - Q=)
| +0.;G¢74 ) e%(%)

Already at 1-loop we see asymptotic freedom:
* For Q% > > u?, a(Q?) decreases if 3, < 0.
11N,
This happens for N, < 5 <16

Po

33 - 2N,

127
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Running Coupling - RGE

@) . _ G(k)

+0s(e e &(%‘)
Already at 1-loop we see asymptotic freedom:
* For Q% > > u?, a(Q?) decreases if 3, < 0. ; 33 - 2N,
11N 0=
This happens for N, < 5 <16 Lom

But also confinement:
* For 0% < < u?, aS(Qz) — 00
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Running Coupling - RGE

0@ - Q=)
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Already at 1-loop we see asymptotic freedom:

* For Q% > > u?, a(Q?) decreases if 3, < 0. ; 33 - 2N,
0T T 22

This happens for N, <

But also confinement:
* For 0% < < u?, aS(Qz) — 00

Crucial parameters of QCD: the energy scale at which aS(Qz) — 00 I Agep
* 1-loop level: I § _@ Q (
e 9(’\exo)
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Running Coupling - RGE
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Already at 1-loop we see asymptotic freedom:

* For Q% > > u?, a(Q?) decreases if 3, < 0. ; 33 - 2N,
0T T 22

This happens for N, <

But also confinement:
* For 0% < < u?, aS(Qz) — 00

Crucial parameters of QCD: the energy scale at which aS(Qz) — 00 I Agep
* 1-loop level: ’ § _@ Q (
e 9(’\exo)
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Aetp]  Aqcp determines the

'\'7;) . non-perturbative region
D

bt 0(Q)= Qe d’}) =D =
.14—@9(‘2) 00 0!4 (%) eyeoa.}@) For N, = 4,
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Lattice Regularization

% Most regularizations (PV, DR, etc) are perturbative, and
remove the divergences order by order in perturbation theory

% Advantage of Lattice regularization: non-perturbative.
Particularly useful for studying the low energy regime of
QCD, where the hadronic physics is

% Preserves chirality and gauge invariance simultaneously

% The applicability of Lattice QCD can also be perturbative.
Perturbative renormalization was traditionally used until
about 10 years ago
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Renormalization on the Lattice

% Lattice perturbation theory was extensively used to
renormalize lattice data of matrix elements of operators, and
parameters of the QCD Lagrangian in the past

* In 1995 ideas for non-perturbative renormalization have

been implemented
[Martinelli et al., Nucl. Phys. B445, 81, arXiv:hep-lat/9411010]

% Currently, non-perturbative renormalization prescriptions are
mostly used

% Lattice perturbation theory is still a useful tool for several
reasons
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Renormalization Functions

% Renormalization functions (Z-factors) depend on the lattice
formulation and other parameters of the discretized action
employed

% Z-factors contain divergent parts as well as finite.
- The regulator independent divergences are universal
- Finite parts depend on action parameters

% Unless one studies matrix elements of conserved currents, the
operators must be renormalized

* Typically, results are converted to a scheme. Convenient

choice: MS scheme, where Wilson coefficients are also
calculated
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Perturbative Renormalization

% In QCD, there are infinite number of interaction vertices.

However, in order-by-order in perturbation theory, only a
finite number of vertices is needed (vertices are
accompanied by factors of the bare coupling constant)

% Lattice QCD perturbation theory is much more complicated
than continuum QCD perturbation theory:

- more vertices and more diagrams

- expressions for propagators and vertices can become
very lengthy
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Perturbative Renormalization
RI-MOM scheme

% Regularization Independent momentum subtraction
(RI-MOM) schemes naturally defined in perturbation theory

% Calculation of Green functions of operators at given off-shell
external states with momentum p

% A condition is applied on the Green functions to match them with
their tree-level value

% Examples of Rl-type conditions:

1
For fermion field Z;' = o (8571 (p) S™(p)]
p2=p2

For operator y/1 v (ZRY1 ZRUTr [GE(p) GE=*(p)]

= Tr |GF**(p) GF**(p)|
pl=p2

pr=u?
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