Renormalization and Improvement

Lecture 3

Martha Constantinou

Tr Temple University

EuroPLEx Summer School 2021 on
Lattice Field Theory and Applications

University of Edinburgh
August 26 - September 3, 2021

EUROPLE

Summer School 2021 on lattice field theory and applications

Renormalization in lattice QCD

K. Wilson contributed significantly in the renormalization since the 1960s

> "The origins of Lattice Gauge Theories", Lattice 2004, arXiv:hep-lat/0412043

Renormalization removed divergence as well as dependence on lattice regulator, so that the continuum limit ($a \rightarrow 0$) can be recovered

Perturbative Renormalization

RI-MOM scheme

* Regularization Independent momentum subtraction (RI-MOM) schemes naturally defined in perturbation theory
* Calculation of Green functions of operators at given off-shell external states with momentum p
* A condition is applied on the Green functions to match them with their tree-level value

太 Examples of RI-type conditions:
For fermion field

$$
Z_{q}^{\mathrm{RI}}=\left.\frac{1}{12} \operatorname{Tr}\left[\left(S^{L}\right)^{-1}(p) S^{\mathrm{tree}}(p)\right]\right|_{p^{2}=\mu^{2}}
$$

For operator $\bar{\psi} \Gamma \psi$

$$
\left.\left(Z_{q}^{\mathrm{RI}}\right)^{-1} Z_{\Gamma}^{\mathrm{RI}} \operatorname{Tr}\left[G_{\Gamma}^{L}(p) G_{\Gamma}^{\mathrm{tree}}(p)\right]\right|_{p^{2}=\mu^{2}}=\left.\operatorname{Tr}\left[G_{\Gamma}^{\mathrm{tree}}(p) G_{\Gamma}^{\mathrm{tree}}(p)\right]\right|_{p^{2}=\mu^{2}}
$$

Exercise: Calculation of Z_{q}

Non-perturbatively in RI scheme

* Starting point: fermion propagators in momentum space

$$
S^{u}(p)=\frac{a^{8}}{V} \sum_{x, y} e^{-i p(x-y)}\langle u(x) \bar{u}(y)\rangle, \quad S^{d}(p)=\frac{a^{8}}{V} \sum_{x, y} e^{-i p(x-y)}\langle d(x) \bar{d}(y)\rangle
$$

Exercise: Calculation of Z_{q}
 Non-perturbatively in RI scheme

Starting point: fermion propagators in momentum space

$$
S^{u}(p)=\frac{a^{8}}{V} \sum_{x, y} e^{-i p(x-y)}\langle u(x) \bar{u}(y)\rangle, \quad S^{d}(p)=\frac{a^{8}}{V} \sum_{x, y} e^{-i p(x-y)}\langle d(x) \bar{d}(y)\rangle
$$

|martha-imac:prop martha_laptop\$ more p_propagator_p2_2_2_2.0500.dat d $00002.601862 \mathrm{e}-02-5.076038 \mathrm{e}-01$
u $00002.601862 \mathrm{e}-025.076038 \mathrm{e}-01$
d $00011.233905 e-03-1.207621 e-03$
u 0001 -1.496412e-04 3.169783e-03
d $0002-1.310907 e-03-2.694817 e-03$
u $00021.468996 e-03-4.242002 \mathrm{e}-03$
d $0010-1.496412 \mathrm{e}-04-3.169783 \mathrm{e}-03$
u 0010 1.233905e-03 1.207621e-03
d $00112.437554 \mathrm{e}-02-5.043610 \mathrm{e}-01$
u $00112.437554 \mathrm{e}-025.043610 \mathrm{e}-01$
d $0012-1.302541 \mathrm{e}-031.948869 \mathrm{e}-03$
u 0012 -8.724107e-04 2.256440e-03
d 0020 1.468996e-03 4.242002e-03
u $0020-1.310907 \mathrm{e}-032.694817 \mathrm{e}-03$
d $0021-8.724107 \mathrm{e}-04-2.256440 \mathrm{e}-03$
u $0021-1.302541 \mathrm{e}-03-1.948869 \mathrm{e}-03$
d $00222.405810 \mathrm{e}-02-5.064780 \mathrm{e}-01$
u $00222.405810 \mathrm{e}-025.064780 \mathrm{e}-01$
d $0100-3.482079 \mathrm{e}-035.214037 \mathrm{e}-04$
u $01001.664846 e-03-8.245727 e-04$
d $0101-4.658045 \mathrm{e}-042.461028 \mathrm{e}-05$
u $0101-9.386779 \mathrm{e}-05-6.597294 \mathrm{e}-04$
d $0102-2.601649 \mathrm{e}-03$ 7.822767e-04
u 0102 3.717451e-03 1.340265e-03
d $0110-1.063519 \mathrm{e}-031.658460 \mathrm{e}-03$
M. Constantinou, EuroPLEx School 2021

Exercise: Calculation of Z_{q}
 Non-perturbatively in RI scheme

Starting point: fermion propagators in momentum space

$$
S^{u}(p)=\frac{a^{8}}{V} \sum_{x, y} e^{-i p(x-y)}\langle u(x) \bar{u}(y)\rangle, \quad S^{d}(p)=\frac{a^{8}}{V} \sum_{x, y} e^{-i p(x-y)}\langle d(x) \bar{d}(y)\rangle
$$

|martha-imac:prop martha_laptop\$ more p_propagator_p2_2_2_2.0500.dat d $00002.601862 \mathrm{e}-02-5.076038 \mathrm{e}-01$
u $00002.601862 \mathrm{e}-025.076038 \mathrm{e}-01$
d $00011.233905 e-03-1.207621 e-03$
u 0001 -1.496412e-04 3.169783e-03
d $0002-1.310907 e-03-2.694817 e-03$
u $00021.468996 e-03-4.242002 e-03$
d $0010-1.496412 \mathrm{e}-04-3.169783 \mathrm{e}-03$
u 0010 1.233905e-03 1.207621e-03
d $00112.437554 \mathrm{e}-02-5.043610 \mathrm{e}-01$
u $00112.437554 \mathrm{e}-025.043610 \mathrm{e}-01$
d $0012-1.302541 \mathrm{e}-031.948869 \mathrm{e}-03$
u 0012 -8.724107e-04 2.256440e-03
d $00201.468996 \mathrm{e}-034.242002 \mathrm{e}-03$
u $0020-1.310907 e-03$ 2.694817e-03
d $0021-8.724107 \mathrm{e}-04-2.256440 \mathrm{e}-03$
u $0021-1.302541 \mathrm{e}-03-1.948869 \mathrm{e}-03$
d $00222.405810 \mathrm{e}-02-5.064780 \mathrm{e}-01$
u $00222.405810 \mathrm{e}-025.064780 \mathrm{e}-01$
d $0100-3.482079 \mathrm{e}-035.214037 \mathrm{e}-04$
u $01001.664846 e-03-8.245727 e-04$
d $0101-4.658045 \mathrm{e}-042.461028 \mathrm{e}-05$
u $0101-9.386779 \mathrm{e}-05-6.597294 \mathrm{e}-04$
d $0102-2.601649 \mathrm{e}-03$ 7.822767e-04
u 0102 3.717451e-03 1.340265e-03
d $0110-1.063519 \mathrm{e}-031.658460 \mathrm{e}-03$
M. Constantinou, EuroPLEx School 2021

Exercise: Calculation of Z_{q}
 Non-perturbatively in RI scheme

Starting point: fermion propagators in momentum space

$$
S^{u}(p)=\frac{a^{8}}{V} \sum_{x, y} e^{-i p(x-y)}\langle u(x) \bar{u}(y)\rangle, \quad S^{d}(p)=\frac{a^{8}}{V} \sum_{x, y} e^{-i p(x-y)}\langle d(x) \bar{d}(y)\rangle
$$

Conf
martha-imac:prop martha_laptop\$ more p_propagator_p2_2_2_2.0500.dat d $00002.601862 \mathrm{e}-02-5.076038 \mathrm{e}-01$
u $00002.601862 \mathrm{e}-025.076038 \mathrm{e}-01$
momentum indices
d $00011.233905 e-03-1.207621 e-03$
u 0001 -1.496412e-04 3.169783e-03
d $0002-1.310907 e-03-2.694817 e-03$
u $00021.468996 e-03-4.242002 \mathrm{e}-03$
d $0010-1.496412 \mathrm{e}-04-3.169783 \mathrm{e}-03$
u $00101.233905 \mathrm{e}-031.207621 \mathrm{e}-03$
d $00112.437554 \mathrm{e}-02-5.043610 \mathrm{e}-01$
u $00112.437554 \mathrm{e}-025.043610 \mathrm{e}-01$
d $0012-1.302541 \mathrm{e}-031.948869 \mathrm{e}-03$
u $0012-8.724107 \mathrm{e}-042.256440 \mathrm{e}-03$
d $00201.468996 \mathrm{e}-034.242002 \mathrm{e}-03$
u $0020-1.310907 \mathrm{e}-03$ 2.694817e-03
d $0021-8.724107 \mathrm{e}-04-2.256440 \mathrm{e}-03$
u $0021-1.302541 \mathrm{e}-03-1.948869 \mathrm{e}-03$
d $00222.405810 \mathrm{e}-02-5.064780 \mathrm{e}-01$
u $00222.405810 \mathrm{e}-025.064780 \mathrm{e}-01$
d $0100-3.482079 \mathrm{e}-035.214037 \mathrm{e}-04$
u $01001.664846 e-03-8.245727 e-04$
d $0101-4.658045 \mathrm{e}-042.461028 \mathrm{e}-05$
u $0101-9.386779 \mathrm{e}-05-6.597294 \mathrm{e}-04$
d $0102-2.601649 \mathrm{e}-03$ 7.822767e-04
u 0102 3.717451e-03 1.340265e-03
d $0110-1.063519 \mathrm{e}-031.658460 \mathrm{e}-03$

$$
\begin{gathered}
a p=2 \pi\left(\frac{n_{t}+\frac{1}{2}}{T}, \frac{n_{x}}{L}, \frac{n_{y}}{L}, \frac{n_{z}}{L}\right) \\
\text { Here: } \\
n_{t}=2, n_{x}=2, n_{y}=2, n_{z}=2 \\
L^{3} \times T=24^{3} \times 48 \\
N_{f}=4
\end{gathered}
$$

$\beta=1.726, \quad a=0.093 \mathrm{fm}$		
$a \mu$	$a m_{P S}$	lattice size
0.0060	0.1680	$24^{3} \times 48$

M. Constantinou, EuroPLEx School 2021

Exercise: Calculation of Z_{q}
 Non-perturbatively in RI scheme

Starting point: fermion propagators in momentum space

$$
S^{u}(p)=\frac{a^{8}}{V} \sum_{x, y} e^{-i p(x-y)}\langle u(x) \bar{u}(y)\rangle, \quad S^{d}(p)=\frac{a^{8}}{V} \sum_{x, y} e^{-i p(x-y)}\langle d(x) \bar{d}(y)\rangle
$$

Conf

u $00222.405810 \mathrm{e}-025.064780 \mathrm{e}-01$
d $0100-3.482079 \mathrm{e}-035.214037 \mathrm{e}-04$
u $01001.664846 e-03-8.245727 e-04$
d $0101-4.658045 \mathrm{e}-042.461028 \mathrm{e}-05$
u $0101-9.386779 \mathrm{e}-05-6.597294 \mathrm{e}-04$
d $0102-2.601649 \mathrm{e}-037.822767 \mathrm{e}-04$
u 0102 3.717451e-03 1.340265e-03
d $0110-1.063519 \mathrm{e}-031.658460 \mathrm{e}-03$

$\beta=1.726, \quad a=0.093 \mathrm{fm}$		
$a \mu$	$a m_{P S}$	lattice size
0.0060	0.1680	$24^{3} \times 48$

Exercise: Calculation of Z_{q} Non-perturbatively in RI scheme

Exercise: Calculation of Z_{q}
 Non-perturbatively in RI scheme

	$\begin{gathered} \mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{c}_{1}, \mathbf{c}_{2} \\ \downarrow \downarrow \end{gathered}$
p_propagator_p2_2_2_2_0500.dat	d $00002.601862 \mathrm{e}-02-5.076038 \mathrm{e}-01$
	u $00002.601862 \mathrm{e}-025.076038 \mathrm{e}-01$
	d $00011.233905 \mathrm{e}-03-1.207621 \mathrm{e}-03$
	u 0001 -1.496412e-04 3.169783e-03
	d $0002-1.310907 \mathrm{e}-03-2.694817 \mathrm{e}-03$
	u $00021.468996 \mathrm{e}-03-4.242002 \mathrm{e}-03$
	d $0010-1.496412 \mathrm{e}-04-3.169783 \mathrm{e}-03$
	u 0010 1.233905e-03 1.207621e-03
	d $00112.437554 \mathrm{e}-02-5.043610 \mathrm{e}-01$
	u $00112.437554 \mathrm{e}-025.043610 \mathrm{e}-01$
	d $0012-1.302541 \mathrm{e}-031.948869 \mathrm{e}-03$
	u $0012-8.724107 \mathrm{e}-042.256440 \mathrm{e}-03$
	d $00201.468996 \mathrm{e}-034.242002 \mathrm{e}-03$
	u $0020-1.310907 \mathrm{e}-03 \mathrm{2} .694817 \mathrm{e}-03$
	d $0021-8.724107 \mathrm{e}-04-2.256440 \mathrm{e}-03$
	u $0021-1.302541 \mathrm{e}-03-1.948869 \mathrm{e}-03$
	d $00222.405810 \mathrm{e}-02-5.064780 \mathrm{e}-01$
	u $00222.405810 \mathrm{e}-025.064780 \mathrm{e}-01$
	d $0100-3.482079 \mathrm{e}-035.214037 \mathrm{e}-04$
	u $01001.664846 \mathrm{e}-03-8.245727 \mathrm{e}-04$
	d $0101-4.658045 \mathrm{e}-042.461028 \mathrm{e}-05$
	u $0101-9.386779 \mathrm{e}-05-6.597294 \mathrm{e}-04$
	d $0102-2.601649 \mathrm{e}-037.822767 \mathrm{e}-04$
	u $01023.717451 \mathrm{e}-031.340265 \mathrm{e}-03$
	d $0110-1.063519 \mathrm{e}-031.658460 \mathrm{e}-03$

Exercise: Calculation of Z_{q} Non-perturbatively in RI scheme

Exercise: Calculation of Z_{q}
 Non-perturbatively in RI scheme

* Each value of momentum is analyzed independently, e.g., p"=" $(2,2,2,2)$ for all the configurations (10)
* Use the data for up-quark or down-quark separately. Z_{q} is extracted from either of these
\star Propagator is a 12×12 matrix (spin-color space). You can use two unique indices instead of $4: 3 * s 1+c 1,3^{*} s 2+c 2$
* A jackknife analysis is applied on the propagators to find the "bins"

Error estimation

Results MUST be accompanied by uncertainties

Jackknife resampling for variance and bias estimation

* Choose the number of omitted data in each bin (defines \# bins)
* Calculate the average over remaining data in each bin
\star Calculate the average of the bins
* Calculate the statistical error of the above average

Error estimation

Results MUST be accompanied by uncertainties

Jackknife resampling for variance and bias estimation

* Choose the number of omitted data in each bin (defines \# bins)
* Calculate the average over remaining data in each bin
\star Calculate the average of the bins
* Calculate the statistical error of the above average

Error estimation

Results MUST be accompanied by uncertainties

Jackknife resampling for variance and bias estimation

* Choose the number of omitted data in each bin (defines \# bins)

$$
N_{\text {data }}=4, \quad N_{\text {omit }}=1, N_{\text {bin }}=4
$$

* Calculate the average over remaining data in each bin
\star Calculate the average of the bins
\star Calculate the statistical error of the above average

Error estimation

Results MUST be accompanied by uncertainties

Jackknife resampling for variance and bias estimation

* Choose the number of omitted data in each bin (defines \# bins)

$$
N_{\text {data }}=4, \quad N_{\text {omit }}=1, N_{\text {bin }}=4
$$

* Calculate the average over remaining data in each bin

$$
D_{\mathrm{i}}=\sum_{j \neq i} \frac{d_{j}}{N_{\mathrm{data}}-N_{\mathrm{omit}}}
$$

\star Calculate the average of the bins

* Calculate the statistical error of the above average

Error estimation

Results MUST be accompanied by uncertainties

Jackknife resampling for variance and bias estimation

\star Choose the number of omitted data in each bin (defines \# bins)

$$
N_{\text {data }}=4, N_{\text {omit }}=1, N_{\text {bin }}=4
$$

* Calculate the average over remaining data in each bin

$$
D_{\mathrm{i}}=\sum_{j \neq i} \frac{d_{j}}{N_{\mathrm{data}}-N_{\mathrm{omit}}}
$$

\star Calculate the average of the bins

$$
\bar{D}=\sum_{i} \frac{D_{\mathrm{i}}}{N_{\text {bin }}}
$$

\star Calculate the statistical error of the above average

Error estimation

Results MUST be accompanied by uncertainties

Jackknife resampling for variance and bias estimation

* Choose the number of omitted data in each bin (defines \# bins)

$$
N_{\text {data }}=4, \quad N_{\text {omit }}=1, \quad N_{\text {bin }}=4
$$

* Calculate the average over remaining data in each bin

$$
D_{\mathrm{i}}=\sum_{j \neq i} \frac{d_{j}}{N_{\mathrm{data}}-N_{\mathrm{omit}}}
$$

\star Calculate the average of the bins

$$
\bar{D}=\sum_{i} \frac{D_{\mathrm{i}}}{N_{\mathrm{bin}}}
$$

* Calculate the statistical error of the above average

$$
d \bar{D}=\sqrt{\sum_{i}\left(D_{i}-\bar{D}\right)^{2}} \sqrt{\frac{N_{\mathrm{bin}}-1}{N_{\mathrm{bin}}}}
$$

Exercise: Calculation of Z_{q}
 Non-perturbatively in RI scheme

\star On each bin, take the inverse of the propagator
\star On each bin, apply the renormalization prescription

$$
\left.\begin{array}{l}
\qquad Z_{q}=\left.\frac{1}{12} \operatorname{Tr}\left[\frac{-i \sum_{\rho} \gamma_{\rho} \sin \left(p_{\rho}\right)}{\sum_{\rho} \sin \left(p_{\rho}\right)^{2}} S_{q}^{-1}(p)(p)\right]\right|_{p^{2}=\mu^{2}} \\
\text { Tree-level (diagonal } \\
\text { in color space) }
\end{array}\right] \begin{aligned}
& \text { where } \mathrm{ap}=2 \pi\left(\frac{n_{t}+\frac{1}{2}}{T}, \frac{n_{x}}{L}, \frac{n_{y}}{L}, \frac{n_{z}}{L}\right)
\end{aligned}
$$

Exercise: Calculation of Z_{q} Non-perturbatively in RI scheme

Matrices basis

Row 1	[marthac@ela3 beta_1.726]\$ more matrices.txt											
	1	0	0	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	-1	0	0	0	0	0	0	-1	0	0
	0	0	0	0	0	-1	-1	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	-1	1	0	0	0	0	0
	0	0	-1	0	0	0	0	0	0	1	0	0
	0	0	-1	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	1	1	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	-1	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	-1	0	0	0	0	0
	0	0	-1	0	0	0	0	0	0	-1	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	-1	0
	1,		Yo,		Y 1 ,		Y2,		Ү3,			${ }_{5}$

Exercise: Calculation of Z_{q}
 Non-perturbatively in RI scheme

* Once you have the bin values of Z_{q} calculate the average and the jackknife error.
\star The estimate for Z_{q} corresponds to a renormalization scale (ap) ${ }^{2}$. Therefore, different estimate Z_{q} is expected for each momentum

Exercise: Calculation of Z_{q}
 Non-perturbatively in RI scheme

* Once you have the bin values of Z_{q} calculate the average and the jackknife error.
* The estimate for Z_{q} corresponds to a renormalization scale (ap) ${ }^{2}$. Therefore, different estimate Z_{q} is expected for each momentum

Exercise: Calculation of Z_{q}
 Non-perturbatively in RI scheme

\star The scheme and scale dependence in the physical matrix elements,

$$
\text { e.g. }\langle N| \bar{\Psi} \Gamma \Psi|N\rangle
$$

is introduced through the renormalization $\quad Z_{\Gamma}^{S}(\mu)\langle N| \Psi \bar{\Psi} \Gamma \Psi|N\rangle$

* To compare with experimental data, one needs to convert to a convenient scheme and renormalization scale. The necessary conversion and evolution is applied on $Z_{\Gamma}^{S}(\mu)$ (by definition, the scheme \& scale are introduced during the renormalization procedure)
* Typically one chooses the $\overline{\mathrm{MS}}$ scheme at a scale μ of 2 GeV

Exercise: Calculation of Z_{q}
 Non-perturbatively in RI scheme

For the scheme conversion it is convenient to use the intermediate Renormalization Group Invariant (RGI) scheme, which is scale independent and relates the RI^{\prime} and $\overline{\mathrm{MS}}$ results

$$
Z_{\mathcal{O}}^{\mathrm{RGI}}=Z_{\mathcal{O}}^{\mathrm{RI}^{\prime}}(\mu) \Delta Z_{\mathcal{O}}^{\mathrm{RI}^{\prime}}(\mu)=Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV}) \Delta Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})
$$

Exercise: Calculation of Z_{q}
 Non-perturbatively in RI scheme

For the scheme conversion it is convenient to use the intermediate Renormalization Group Invariant (RGI) scheme, which is scale independent and relates the RI^{\prime} and $\overline{\mathrm{MS}}$ results

$$
Z_{\mathcal{O}}^{\left.\mathrm{RGI}=Z_{\mathcal{O}}^{\mathrm{RI}^{\prime}}(\mu) \Delta Z_{\mathcal{O}}^{\mathrm{RI}^{\prime}}(\mu)=Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV}) \Delta Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV}), ~()^{2}\right)}
$$

The conversion factor can be read from the above relation

$$
z_{\mathcal{O}}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV}) \equiv C_{\mathcal{O}}^{\mathrm{R} \mathrm{I}^{\prime}, \overline{\mathrm{MS}}}(\mu, 2 \mathrm{GeV}) Z_{\mathcal{O}}^{\mathrm{RI}^{\prime}}(\mu), \quad C_{\mathcal{O}}^{\mathrm{RI}, \overline{\mathrm{MS}}}(\mu, 2 \mathrm{GeV})=\frac{\Delta Z_{\mathcal{O}}^{\mathrm{R}^{\prime}}(\mu)}{\Delta Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})}
$$

Exercise: Calculation of Z_{q}
 Non-perturbatively in RI scheme

For the scheme conversion it is convenient to use the intermediate Renormalization Group Invariant (RGI) scheme, which is scale independent and relates the RI^{\prime} and $\overline{\mathrm{MS}}$ results

$$
Z_{\mathcal{O}}^{\mathrm{RGI}}=Z_{\mathcal{O}}^{\mathrm{RI}^{\prime}}(\mu) \Delta Z_{\mathcal{O}}^{\mathrm{RI}^{\prime}}(\mu)=Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV}) \Delta Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})
$$

The conversion factor can be read from the above relation

$$
Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV}) \equiv C_{\mathcal{O}}^{\mathrm{R} \mathrm{I}^{\prime}, \overline{\mathrm{MS}}}(\mu, 2 \mathrm{GeV}) Z_{\mathcal{O}}^{\mathrm{RI}^{\prime}}(\mu), \quad C_{\mathcal{O}}^{\mathrm{R} \mathrm{I}^{\prime}, \overline{\mathrm{MS}}}(\mu, 2 \mathrm{GeV})=\frac{\Delta Z_{\mathcal{O}}^{\mathrm{R}^{\prime}}(\mu)}{\Delta Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})}
$$

* The scheme dependent quantity ΔZ can be expressed in terms of the β-function and the anomalous dimension, γ s of the operator

$$
\Delta Z_{\mathcal{O}}^{\mathcal{S}}(\mu)=\left(2 \beta_{0} \frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}}\right)^{-\frac{\gamma_{0}}{2 \rho_{0}}} \exp \left\{\int_{0}^{g^{s}(\mu)} \mathrm{d} g^{\prime}\left(\frac{\gamma^{\mathcal{S}}\left(g^{\prime}\right)}{\beta^{\mathcal{S}}\left(g^{\prime}\right)}+\frac{\gamma_{0}}{\beta_{0} g^{\prime}}\right)\right\}
$$

Exercise: Calculation of Z_{q}
 \section*{Non-perturbatively in RI scheme}

The scheme dependent quantity ΔZ can be expressed in terms of the β-function and the anomalous dimension, γ s of the operator/field

$$
\Delta Z_{\mathcal{O}}^{\mathcal{S}}(\mu)=\left(2 \beta_{0} \frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}}\right)^{-\frac{\tau_{0}}{2 \mathcal{P}_{0}}} \exp \left\{\int_{0}^{g^{s}(\mu)} \mathrm{d} g^{\prime}\left(\frac{\gamma^{\mathcal{S}}\left(g^{\prime}\right)}{\beta^{\mathcal{S}}\left(g^{\prime}\right)}+\frac{\gamma_{0}}{\beta_{0} g^{\prime}}\right)\right\}
$$

Exercise: Calculation of Z_{q}
 Non-perturbatively in RI scheme

The scheme dependent quantity ΔZ can be expressed in terms of the β-function and the anomalous dimension, γ s of the operator/field

$$
\begin{array}{clr}
\Delta Z_{\mathcal{O}}^{\mathcal{S}}(\mu)=\left(2 \beta_{0} \frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}}\right)^{-\frac{\gamma_{0}}{2 \beta_{0}}} \exp \left\{\int_{0}^{g^{\mathcal{S}}(\mu)} \mathrm{d} g^{\prime}\left(\frac{\gamma^{\mathcal{S}}\left(g^{\prime}\right)}{\beta^{\mathcal{S}}\left(g^{\prime}\right)}+\frac{\gamma_{0}}{\beta_{0} g^{\prime}}\right)\right\} & \\
\beta^{\mathcal{S}}=\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} g^{\mathcal{S}}(\mu)=-\beta_{0} \frac{g^{\mathcal{S}}(\mu)^{3}}{16 \pi^{2}}-\beta_{1} \frac{g^{\mathcal{S}}(\mu)^{5}}{\left(16 \pi^{2}\right)^{2}}-\beta_{2}^{\mathcal{S}} \frac{g^{\mathcal{S}}(\mu)^{7}}{\left(16 \pi^{2}\right)^{3}}+\cdots & \beta_{0}=11-\frac{2}{3} N_{f}, & \gamma_{0}=0, \\
\gamma^{\mathcal{S}}=-\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} \log Z_{\mathcal{S}}=\gamma_{0} \frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}}+\gamma_{1}^{\mathcal{S}}\left(\frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}}\right)^{2}+\gamma_{2}^{\mathcal{S}}\left(\frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}}\right)^{3}+\cdots & \beta_{1}=102-\frac{38}{3} N_{f}, & \gamma_{1}=\frac{134}{3}-\frac{8}{3} N_{f}, \\
\gamma_{2}^{\overline{\mathrm{MS}}}=\frac{20729}{18}-79 \zeta_{3}-\frac{1100}{9} N_{f}+\frac{40}{27} N_{f}^{2} \\
& \beta_{2}=\frac{2857}{2}-\frac{5033}{18} N_{f}+\frac{325}{54} N_{f}^{2} & \gamma_{2}^{\mathrm{RI}^{\prime}}=\frac{52321}{18}-79 \zeta_{3}-\frac{1100}{9} N_{f}+\frac{40}{27} N_{f}^{2}
\end{array}
$$

Exercise: Calculation of Z_{q}
 Non-perturbatively in RI scheme

* The scheme dependent quantity ΔZ can be expressed in terms of the β-function and the anomalous dimension, γ s of the operator/field

$$
\Delta Z_{\mathcal{O}}^{\mathcal{S}}(\mu)=\left(2 \beta_{0} \frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}}\right)^{-\frac{\gamma_{0}}{2 \beta_{0}}} \exp \left\{\int_{0}^{g^{\mathcal{S}}(\mu)} \mathrm{d} g^{\prime}\left(\frac{\gamma^{\mathcal{S}}\left(g^{\prime}\right)}{\beta^{\mathcal{S}}\left(g^{\prime}\right)}+\frac{\gamma_{0}}{\beta_{0} g^{\prime}}\right)\right\}
$$

$$
\beta^{\mathcal{S}}=\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} g^{\mathcal{S}}(\mu)=-\beta_{0} \frac{g^{\mathcal{S}}(\mu)^{3}}{16 \pi^{2}}-\beta_{1} \frac{g^{\mathcal{S}}(\mu)^{5}}{\left(16 \pi^{2}\right)^{2}}-\beta_{2}^{\mathcal{S}} \frac{g^{\mathcal{S}}(\mu)^{7}}{\left(16 \pi^{2}\right)^{3}}+\cdots
$$

$$
\beta_{0}=11-\frac{2}{3} N_{f}
$$

$$
\gamma_{0}=0
$$

$$
\beta_{0}=11-\frac{-}{3} N_{f}, \quad \gamma_{1}=\frac{104}{3}-\frac{0}{3} N_{f},
$$

$$
\beta_{1}=102-\frac{38}{3} N_{f}
$$

$$
\gamma_{2}^{\overline{\mathrm{MS}}}=\frac{20729}{18}-79 \zeta_{3}-\frac{1100}{9} N_{f}+\frac{40}{27} N_{f}^{2}
$$

$$
\gamma^{\mathcal{S}}=-\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} \log Z_{\mathcal{S}}=\gamma_{0} \frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}}+\gamma_{1}^{\mathcal{S}}\left(\frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}}\right)^{2}+\gamma_{2}^{\mathcal{S}}\left(\frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}}\right)^{3}+\cdots \quad \beta_{2}=\frac{2857}{2}-\frac{5033}{18} N_{f}+\frac{325}{54} N_{f}^{2}
$$

$$
\gamma_{2}^{\mathrm{R}^{\prime}}=\frac{52321}{18}-79 \zeta_{3}-\frac{1100}{9} N_{f}+\frac{40}{27} N_{f}^{2}
$$

To 3-loop approximation:

$$
\begin{aligned}
\Delta Z_{\mathcal{O}}^{\mathcal{S}}(\mu)= & \left(2 \beta_{0} \frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}}\right)^{-\frac{\gamma_{0}}{2 \beta_{0}}}\left(1+\frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}} \frac{\beta_{1} \gamma_{0}-\beta_{0} \gamma_{1}^{S}}{2 \beta_{0}^{2}}+\right. \\
& \left.\frac{g^{\mathcal{S}}(\mu)^{4}}{\left(16 \pi^{2}\right)^{2}} \frac{-2 \beta_{0}^{3} \gamma_{2}^{S}+\beta_{0}^{2}\left(\gamma_{1}^{S}\left(2 \beta_{1}+\gamma_{1}^{S}\right)+2 \beta_{2} \gamma_{0}\right)-2 \beta_{0} \beta_{1} \gamma_{0}\left(\beta_{1}+\gamma_{1}^{S}\right)+\beta_{1}^{2} \gamma_{0}^{2}}{8 \beta_{0}^{4}}\right)
\end{aligned}
$$

$\left.\left.\frac{g^{\overline{\mathrm{MS}}, \mathrm{RI}^{\prime}}(\mu)^{2}}{16 \pi^{2}}\right|_{3-\text { loop }}=\frac{1}{\beta_{0} L}-\frac{\beta_{1}}{\beta_{0}^{3}} \frac{\log L}{L^{2}}+\frac{1}{\beta_{0}^{5}} \frac{\beta_{1}^{2} \log ^{2} L-\beta_{1}^{2} \log L+\beta_{2} \beta_{0}-\beta_{1}^{2}}{L^{3}}\right), \quad L=\log \frac{\mu^{2}}{\Lambda_{\overline{\mathrm{MS}}}} \quad \Lambda_{\overline{\mathrm{MS}}}=294 \quad$ Here $\quad(\mathrm{Nf}=4)$

Exercise: Calculation of Z_{q}

Non-perturbatively in RI scheme

* Each value is converted to the $\overline{\mathrm{MS}}$ scheme and evolved to a common scale (2 GeV)

$$
Z_{q}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})=C^{\overline{\mathrm{MS}}, \mathrm{RI}}\left(2 \mathrm{GeV}, \mu_{0}\right) \mathscr{E}_{q}^{\mathrm{RI}}\left(\mu_{0}\right)
$$

Exercise: Calculation of Z_{q}
 Non-perturbatively in RI scheme

Each value is converted to the $\overline{\mathrm{MS}}$ scheme and evolved to a common scale (2 GeV)

$$
Z_{q}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})=C^{\overline{\mathrm{MS}}, \mathrm{RI}}\left(2 \mathrm{GeV}, \mu_{0}\right) \mathscr{E}_{q}^{\mathrm{RI}}\left(\mu_{0}\right)
$$

RI-scale			$C^{\overline{\mathrm{MS}}, \mathrm{RI}}\left(2 \mathrm{GeV}, \mu_{0}\right)$	
2	2	2	2	0.99100206897122278
3	2	2	2	0.99294282316067028
3	3	3	3	1.0032896646629899
3	4	4	4	1.0091758085180254
4	2	2	2	0.99510205432872045
4	3	3	3	1.0040829703706433
4	4	4	4	1.0095521548715289
4	5	5	5	1.0132348431953588
5	2	2	2	0.99730459096929835
5	3	3	3	1.0049781204593131
5	4	4	4	1.0099952827090808
5	5	5	5	1.0134870227807959
6	3	3	3	1.0059351309588331
6	4	4	4	1.0104912752396640
6	5	5	5	1.0137760840862191
7	3	3	3	1.0069205185317565
7	4	4	4	1.0110265994346921
7	5	5	5	1.0140961806241273
8	3	3	3	1.0079082825459709
8	4	4	4	1.0115888346131423
8	5	5	5	1.0144414892330362
9	4	4	4	1.012167115875919
9	5	5	5	1.0148064367797194

Exercise: Calculation of Z_{q}
 Non-perturbatively in RI scheme

* Each value is converted to the $\overline{\mathrm{MS}}$ scheme and evolved to a common scale (2 GeV)

Exercise: Calculation of Z_{q}
 Non-perturbatively in RI scheme

* Each value is converted to the $\overline{\mathrm{MS}}$ scheme and evolved to a common scale (2 GeV)

Contributions of Lattice Pert. Theory

1. Mixing coefficients can be difficult to extract non-perturbatively due to signal-noise problem
2. Renormalization of new operators for which non-perturbative prescriptions are not available
3. Qualitative understanding of the renormalization pattern of operators
4. Operator improvement
5. Synergy between perturbative and non-perturbative results helps improve final estimates for renormalization functions

Contributions of Lattice Pert. Theory (1)

Contributions of Lattice Pert. Theory (1)

* Mixing coefficients can be difficult to extract non-perturbatively due to signal-noise problem

Contributions of Lattice Pert. Theory (1)

* Mixing coefficients can be difficult to extract non-perturbatively due to signal-noise problem
\star Prominent example: quark, gluon momentum fraction $\langle x\rangle_{q, g}$

Contributions of Lattice Pert. Theory (1)

* Mixing coefficients can be difficult to extract non-perturbatively due to signal-noise problem
* Prominent example: quark, gluon momentum fraction $\langle x\rangle_{q, g}$

Contributions of Lattice Pert. Theory (1)

* Mixing coefficients can be difficult to extract non-perturbatively due to signal-noise problem
* Prominent example: quark, gluon momentum fraction $\langle x\rangle_{q, g}$

$$
\begin{aligned}
\sum_{q}\langle x\rangle_{q}^{R} & =Z_{q q} \sum_{q}\langle x\rangle_{q}^{B} \\
\langle x\rangle_{g}^{R} & =Z_{g g}\langle x\rangle_{g}^{B}
\end{aligned}
$$

Absence of mixing: multiplicative renormalization

Contributions of Lattice Pert. Theory (1)

* Mixing coefficients can be difficult to extract non-perturbatively due to signal-noise problem
\star Prominent example: quark, gluon momentum fraction $\langle x\rangle_{q, g}$

$$
\begin{aligned}
\sum_{q}\langle x\rangle_{q}^{R} & =Z_{q q} \sum_{q}\langle x\rangle_{q}^{B}+Z_{q g}\langle x\rangle_{g}^{B} \\
\langle x\rangle_{g}^{R} & =Z_{g g}\langle x\rangle_{g}^{B}+Z_{g q} \sum_{q}\langle x\rangle_{q}^{B}
\end{aligned}
$$

Absence of mixing: multiplicative renormalization

Contributions of Lattice Pert. Theory (1)

* Mixing coefficients can be difficult to extract non-perturbatively due to signal-noise problem
* Prominent example: quark, gluon momentum fraction $\langle x\rangle_{q, g}$

$$
\begin{aligned}
\sum_{q}\langle x\rangle_{q}^{R} & =Z_{q q} \sum_{q}\langle x\rangle_{q}^{B}+Z_{q g}\langle x\rangle_{g}^{B} \\
\langle x\rangle_{g}^{R} & =Z_{g g}\langle x\rangle_{g}^{B}+Z_{g q} \sum_{q}\langle x\rangle_{q}^{B}
\end{aligned}
$$

Absence of mixing: multiplicative renormalization

Presence of mixing: contributions from multiple matrix elements

Contributions of Lattice Pert. Theory (1)

* Mixing coefficients can be difficult to extract non-perturbatively due to signal-noise problem
* Prominent example: quark, gluon momentum fraction $\langle x\rangle_{q, g}$

$$
\begin{aligned}
\sum_{q}\langle x\rangle_{q}^{R} & =Z_{q q} \sum_{q}\langle x\rangle_{q}^{B}+Z_{q g}\langle x\rangle_{g}^{B} \\
\langle x\rangle_{g}^{R} & =Z_{g g}\langle x\rangle_{g}^{B}+Z_{g q} \sum_{q}\langle x\rangle_{q}^{B}
\end{aligned}
$$

Absence of mixing: multiplicative renormalization

Presence of mixing: contributions from multiple matrix elements

Mixing coefficients $Z_{g q}, Z_{q g}$:

- subleading compared to $Z_{q q}, Z_{g g}$
- difficult to extract non-perturbatively due to gauge noise

Contributions of Lattice Pert. Theory (1)

(d) $Z_{g g}$

* Analytic expressions

$$
\begin{aligned}
& Z_{g g}=1+\frac{g^{2}}{16 \pi^{2}}\left(\frac{e_{11}^{(1)}}{N_{c}}+e_{11}^{(2)} N_{f}-\frac{2 N_{f}}{3} \log \left(a^{2} \bar{\mu}^{2}\right)\right) \\
& Z_{g q}=0+\frac{g^{2} C_{f}}{16 \pi^{2}}\left(e_{12}^{(1)}+e_{12}^{(2)} c_{\mathrm{SW}}+\frac{8}{3} \log \left(a^{2} \bar{\mu}^{2}\right)\right) .
\end{aligned}
$$

Non-perturbative calculations unsuccessful for $Z_{g q}$ and $Z_{q g}$

[Y.B Yang et al., PRD 98, 074506 (2018), arXiv:1805.00531]
[C. Alexandrou et al., PRD 101, 094513 (2020), arXiv:2003.08486]

Contributions of Lattice Pert. Theory (1)

Quark and gluon momentum fraction mixing in LPT

(a) $Z_{q q}$

(b) $Z_{q g}$

(c) $\mathbb{Z}_{g q}$

(d) $Z_{g g}$

* Analytic expressions

$$
\begin{aligned}
& Z_{g g}=1+\frac{g^{2}}{16 \pi^{2}}\left(\frac{e_{11}^{(1)}}{N_{c}}+e_{11}^{(2)} N_{f}-\frac{2 N_{f}}{3} \log \left(a^{2} \bar{\mu}^{2}\right)\right) \\
& Z_{g q}=0+\frac{g^{2} C_{f}}{16 \pi^{2}}\left(e_{12}^{(1)}+e_{12}^{(2)} c_{\mathrm{SW}}+\frac{8}{3} \log \left(a^{2} \bar{\mu}^{2}\right)\right) .
\end{aligned}
$$

Non-perturbative calculations unsuccessful for $Z_{g q}$ and $Z_{q g}$
[Y.B Yang et al., PRD 98, 074506 (2018), arXiv:1805.00531]
[C. Alexandrou et al., PRD 101, 094513 (2020), arXiv:2003.08486]

Contributions of Lattice Pert. Theory (1)

Quark and gluon momentum fraction mixing in LPT

(a) $Z_{q q}$

(b) $Z_{q g}$

(d) $Z_{g g}$

* Analytic expressions

$$
\begin{aligned}
& Z_{g g}=1+\frac{g^{2}}{16 \pi^{2}}\left(\frac{e_{11}^{(1)}}{N_{c}}+e_{11}^{(2)} N_{f}-\frac{2 N_{f}}{3} \log \left(a^{2} \bar{\mu}^{2}\right)\right) \\
& Z_{g q}=0+\frac{g^{2} C_{f}}{16 \pi^{2}}\left(e_{12}^{(1)}+e_{12}^{(2)} c_{\mathrm{SW}}+\frac{8}{3} \log \left(a^{2} \bar{\mu}^{2}\right)\right) .
\end{aligned}
$$

Non-perturbative calculations unsuccessful for $Z_{g q}$ and $Z_{q g}$
[Y.B Yang et al., PRD 98, 074506 (2018), arXiv:1805.00531]
[C. Alexandrou et al., PRD 101, 094513 (2020), arXiv:2003.08486]

Contributions of Lattice Pert. Theory (1)

Quark and gluon momentum fraction mixing in LPT

(a) $Z_{q q}$

(b) $Z_{q g}$

(d) $Z_{g g}$

* Mixing coefficients can be isolated
\star Calculation is very taxing! Many millions of terms...
* Analytic expressions

$$
\begin{aligned}
& Z_{g g}=1+\frac{g^{2}}{16 \pi^{2}}\left(\frac{e_{11}^{(1)}}{N_{c}}+e_{11}^{(2)} N_{f}-\frac{2 N_{f}}{3} \log \left(a^{2} \bar{\mu}^{2}\right)\right) \\
& Z_{g q}=0+\frac{g^{2} C_{f}}{16 \pi^{2}}\left(e_{12}^{(1)}+e_{12}^{(2)} c_{\mathrm{SW}}+\frac{8}{3} \log \left(a^{2} \bar{\mu}^{2}\right)\right) .
\end{aligned}
$$

Non-perturbative calculations unsuccessful for $Z_{g q}$ and $Z_{q g}$
[Y.B Yang et al., PRD 98, 074506 (2018), arXiv:1805.00531]
[C. Alexandrou et al., PRD 101, 094513 (2020), arXiv:2003.08486]

