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Renormalization in lattice QCD

Renormalization removed divergence as well as dependence on lattice 
regulator, so that the continuum limit ( ) can be recovereda → 0

K. Wilson contributed significantly in the renormalization since the 1960s 
 
                          “The origins of Lattice Gauge Theories”,  
                                Lattice 2004, arXiv:hep-lat/0412043
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Perturbative Renormalization

For fermion field

For operator ψ̄Γψ (ZRI
q )−1 Z RI

Γ Tr [GL
Γ(p) Gtree

Γ (p)]
p2=μ2

= Tr [Gtree
Γ (p) Gtree

Γ (p)]
p2=μ2

ZRI
q = 1

12 Tr [(SL)−1(p) Stree(p)]
p2=μ2

RI-MOM scheme
̣ Regularization Independent momentum subtraction  

(RI-MOM) schemes naturally defined in perturbation theory 

̣ Calculation of Green functions of operators at given off-shell 
external states with momentum p 

̣ A condition is applied on the Green functions to match them with 
their tree-level value 

̣ Examples of RI-type conditions:
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Exercise: Calculation of Zq
Non-perturbatively in RI scheme

̣ Starting point: fermion propagators in momentum space
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Exercise: Calculation of Zq
Non-perturbatively in RI scheme

Conf

̣ Starting point: fermion propagators in momentum space

momentum indices

Here: 
 

 

nt = 2, nx = 2, ny = 2, nz = 2

L3 × T = 243 × 48
Nf = 4

ap = 2π
nt + 1

2
T

, nx

L
,

ny

L
,

nz

L
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Exercise: Calculation of Zq
Non-perturbatively in RI scheme

Conf

d-quark
u-quark

̣ Starting point: fermion propagators in momentum space

momentum indices

Here: 
 

 

nt = 2, nx = 2, ny = 2, nz = 2

L3 × T = 243 × 48
Nf = 4

ap = 2π
nt + 1

2
T

, nx

L
,

ny

L
,

nz
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Exercise: Calculation of Zq
Non-perturbatively in RI scheme

p_propagator_p2_2_2_2_0500.dat
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Exercise: Calculation of Zq
Non-perturbatively in RI scheme

p_propagator_p2_2_2_2_0500.dat

s1,  s2,  c1,  c2
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Exercise: Calculation of Zq
Non-perturbatively in RI scheme

p_propagator_p2_2_2_2_0500.dat

s1,  s2,  c1,  c2

Real                 Imaginary
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Exercise: Calculation of Zq
Non-perturbatively in RI scheme

̣ Each value of momentum is analyzed independently, e.g., p“=”(2,2,2,2) 
for all the configurations (10) 

̣ Use the data for up-quark or down-quark separately.  
 is extracted from either of these 

̣ Propagator is a 12 x 12 matrix (spin-color space). You can use two 
unique indices instead of 4: 3*s1+c1,3*s2+c2 

̣ A jackknife analysis is applied on the propagators to find the “bins”

Zq
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Error estimation

̣ Choose the number of omitted 
data in each bin (defines # bins)  

̣ Calculate the average over 
remaining data in each bin 

̣ Calculate the average of the bins 

̣ Calculate the statistical error of 
the above average

Results MUST be accompanied by uncertainties

Jackknife resampling  
for variance and bias estimation
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Error estimation

̣ Choose the number of omitted 
data in each bin (defines # bins)  

̣ Calculate the average over 
remaining data in each bin 

̣ Calculate the average of the bins 

̣ Calculate the statistical error of 
the above average

Results MUST be accompanied by uncertainties

D4D1

Ndata = 4, Nomit = 1 , Nbin = 4

Di = ∑
j≠i

dj

Ndata − Nomit
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Error estimation

̣ Choose the number of omitted 
data in each bin (defines # bins)  

̣ Calculate the average over 
remaining data in each bin 

̣ Calculate the average of the bins 

̣ Calculate the statistical error of 
the above average

Results MUST be accompanied by uncertainties

D4D1

Ndata = 4, Nomit = 1 , Nbin = 4

Di = ∑
j≠i

dj

Ndata − Nomit

D̄ = ∑
i

Di
Nbin

dD̄ = ∑
i

(Di − D̄)2 Nbin − 1
Nbin

Jackknife resampling  
for variance and bias estimation
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Exercise: Calculation of Zq
Non-perturbatively in RI scheme

̣ On each bin, take the inverse of the propagator

̣ On each bin, apply the renormalization prescription 

Tree-level (diagonal 
in color space)

where ap = 2π
nt + 1

2
T

, nx

L
,

ny

L
,

nz

L
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Exercise: Calculation of Zq
Non-perturbatively in RI scheme

̣ Matrices basis

1,                 γ0,              γ1,               γ2,                γ3,                           γ5

{Row 1
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Exercise: Calculation of Zq
Non-perturbatively in RI scheme

̣ Once you have the bin values of  calculate the average and the 
jackknife error.

Zq

̣ The estimate for  corresponds to a renormalization scale (ap)2.  
Therefore, different estimate  is expected for each momentum 

Zq
Zq
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Exercise: Calculation of Zq
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Exercise: Calculation of Zq
Non-perturbatively in RI scheme

̣ The scheme and scale dependence in the physical matrix elements, 
                                    e.g.   
is introduced through the renormalization         

̣ To compare with experimental data, one needs to convert to a 
convenient scheme and renormalization scale.  
The necessary conversion and evolution is applied on  
(by definition, the scheme & scale are introduced during the renormalization procedure) 

̣ Typically one chooses the  scheme at a scale µ of 2 GeV

⟨N |Ψ̄ Γ Ψ |N⟩
Z S

Γ(μ) ⟨N |Ψ̄ Γ Ψ |N⟩

Z S
Γ(μ)

MS
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Exercise: Calculation of Zq
Non-perturbatively in RI scheme

̣ For the scheme conversion it is convenient to use the intermediate 
Renormalization Group Invariant (RGI) scheme, which is scale 
independent and relates the RI′ and  resultsMS
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Exercise: Calculation of Zq
Non-perturbatively in RI scheme

̣ For the scheme conversion it is convenient to use the intermediate 
Renormalization Group Invariant (RGI) scheme, which is scale 
independent and relates the RI′ and  resultsMS

̣ The conversion factor can be read from the above relation

̣ The scheme dependent quantity ∆Z can be expressed in terms of 
the β-function and the anomalous dimension, γS of the operator
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Exercise: Calculation of Zq
Non-perturbatively in RI scheme

̣ The scheme dependent quantity ∆Z can be expressed in terms of the 
β-function and the anomalous dimension, γS of the operator/field

= 294   (Nf=4)

Here
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Exercise: Calculation of Zq
Non-perturbatively in RI scheme
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Exercise: Calculation of Zq
Non-perturbatively in RI scheme

̣ The scheme dependent quantity ∆Z can be expressed in terms of the 
β-function and the anomalous dimension, γS of the operator/field

̣ To 3-loop approximation:

= 294   (Nf=4)

Here
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Exercise: Calculation of Zq
Non-perturbatively in RI scheme

̣ Each value is converted to the  scheme and evolved to a 
common scale (2 GeV) 

MS

ZMS
q (2 GeV) = CMS, RI(2 GeV, μ0) )RI

q (μ0)
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Exercise: Calculation of Zq
Non-perturbatively in RI scheme

̣ Each value is converted to the  scheme and evolved to a 
common scale (2 GeV) 

MS

ZMS
q (2 GeV) = CMS, RI(2 GeV, μ0) )RI

q (μ0)
RI-scale

̣ Lattice artifacts lead to large slopes
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1. Mixing coefficients can be difficult to extract non-perturbatively 
due to signal-noise problem  

2. Renormalization of new operators for which non-perturbative 
prescriptions are not available 

3. Qualitative understanding of the renormalization pattern of 
operators 

4. Operator improvement 

5. Synergy between perturbative and non-perturbative results 
helps improve final estimates for renormalization functions

Contributions of Lattice Pert. Theory
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Contributions of Lattice Pert. Theory (1)
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Contributions of Lattice Pert. Theory (1)
̣ Mixing coefficients can be difficult to extract non-perturbatively 

due to signal-noise problem 

̣ Prominent example: quark, gluon momentum fraction ⟨x⟩q,g

connected                                    quark disconnected                                    gluon disconnected



Absence of mixing:  
multiplicative  
renormalization
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Contributions of Lattice Pert. Theory (1)
̣ Mixing coefficients can be difficult to extract non-perturbatively 

due to signal-noise problem 

̣ Prominent example: quark, gluon momentum fraction ⟨x⟩q,g

connected                                    quark disconnected                                    gluon disconnected

Presence of mixing:  
contributions from  
multiple matrix elements

Mixing coefficients  : 
- subleading compared to   
- difficult to extract non-perturbatively due to gauge noise 

Zgq, Zqg
Zqq, Zgg
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Contributions of Lattice Pert. Theory (1)

Zqq

Zgg

Zqg

Zgq

Zgg

Zgq

̣ Analytic expressions

[Y.B Yang et al., PRD 98, 074506 (2018), arXiv:1805.00531]
[C. Alexandrou et al., PRD 101, 094513 (2020), arXiv:2003.08486]

̣ Non-perturbative calculations  
unsuccessful for  and   Zgq Zqg
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Contributions of Lattice Pert. Theory (1)
Quark and gluon momentum fraction mixing in LPT
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Contributions of Lattice Pert. Theory (1)
Quark and gluon momentum fraction mixing in LPT

Zqq

Zgg

Zqg

Zgq

̣ Mixing coefficients can be 
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Contributions of Lattice Pert. Theory (1)
Quark and gluon momentum fraction mixing in LPT

Zqq

Zgg

Zqg

Zgq

̣ Mixing coefficients can be 
isolated 

̣ Calculation is very taxing! 
Many millions of terms…

Zgg

Zgq

̣ Analytic expressions

[Y.B Yang et al., PRD 98, 074506 (2018), arXiv:1805.00531]
[C. Alexandrou et al., PRD 101, 094513 (2020), arXiv:2003.08486]

̣ Non-perturbative calculations  
unsuccessful for  and   Zgq Zqg


