Renormalization and Improvement

Lecture 4

Martha Constantinou

IT Temple University

EuroPLEx Summer School 2021 on
Lattice Field Theory and Applications

University of Edinburgh
August 26 - September 3, 2021

EUROPLE

Summer School 2021 on lattice field theory and applications

Exercise: Calculation of Z_{q}

Non-perturbatively in RI scheme

\star The scale dependence of Z-factors of operators is determined by its anomalous dimension

$$
\gamma^{\mathcal{S}}=-\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} \log Z_{\mathcal{S}}=\gamma_{0} \frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}}+\gamma_{1}^{\mathcal{S}}\left(\frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}}\right)^{2}+\gamma_{2}^{\mathcal{S}}\left(\frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}}\right)^{3}+\cdots
$$

* Integrating this equation, one gets

$$
\Delta Z_{\mathcal{O}}^{\mathcal{S}}(\mu)=\left(2 \beta_{0} \frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}}\right)^{-\frac{\gamma_{0}}{2 \beta_{0}}} \exp \left\{\int_{0}^{g^{\mathcal{S}}(\mu)} \mathrm{d} g^{\prime}\left(\frac{\gamma^{\mathcal{S}}\left(g^{\prime}\right)}{\beta^{\mathcal{S}}\left(g^{\prime}\right)}+\frac{\gamma_{0}}{\beta_{0} g^{\prime}}\right)\right\}
$$

If one uses the RI scheme, β_{2} is the same as $\overline{\mathrm{MS}}$

* Therefore, all the scale and scheme dependence in Z-factor is captures in ΔZ. This allows to define the RGI (renormalization group invariant) operator, which is independent of scale and scheme.

$$
Z_{\mathcal{O}}^{\mathrm{RGI}}=Z_{\mathcal{O}}^{\mathrm{R}^{\prime}}(\mu) \Delta Z_{\mathcal{O}}^{\mathrm{RI}^{\prime}}(\mu)=Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV}) \Delta Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})
$$

Exercise: Calculation of Z_{q}

 Non-perturbatively in RI scheme

 Non-perturbatively in RI scheme}\star The scale dependence of Z-factors of operators is determined by its anomalous dimension

$$
\gamma^{\mathcal{S}}=-\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} \log Z_{\mathcal{S}}=\gamma_{0} \frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}}+\gamma_{1}^{\mathcal{S}}\left(\frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}}\right)^{2}+\gamma_{2}^{\mathcal{S}}\left(\frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}}\right)^{3}+\cdots
$$

\star Integrating this equation, one gets

$$
\Delta Z_{\mathcal{O}}^{\mathcal{S}}(\mu)=\left(2 \beta_{0} \frac{g^{\mathcal{S}}(\mu)^{2}}{16 \pi^{2}}\right)^{-\frac{\gamma_{0}}{2 \beta_{0}}} \exp \left\{\int_{0}^{g^{\mathcal{S}}(\mu)} \mathrm{d} g^{\prime}\left(\frac{\gamma^{\mathcal{S}}\left(g^{\prime}\right)}{\beta^{\mathcal{S}}\left(g^{\prime}\right)}+\frac{\gamma_{0}}{\beta_{0} g^{\prime}}\right)\right\}
$$

$\beta^{\mathcal{S}}=\mu \frac{\mathrm{d}}{\mathrm{d} \mu} g^{\mathcal{S}}(\mu)=-\beta_{0} \frac{g^{\mathcal{S}}(\mu)^{3}}{16 \pi^{2}}-\beta_{1} \frac{g^{\mathcal{S}}(\mu)^{5}}{\left(16 \pi^{2}\right)^{2}}-\beta_{2}^{\mathcal{S}} \frac{g^{\mathcal{S}}(\mu)^{7}}{\left(16 \pi^{2}\right)^{3}}+\cdots$

$$
\beta_{0}=11-\frac{2}{3} N_{f},
$$

$$
\beta_{1}=102-\frac{38}{3} N_{f}, \quad \text { If one uses the RI scheme, }
$$

$$
\beta_{2}=\frac{2857}{2}-\frac{5033}{18} N_{f}+\frac{325}{54} N_{f}^{2} \quad \beta_{2} \text { is the same as } \overline{\mathrm{MS}}
$$

* Therefore, all the scale and scheme dependence in Z-factor is captures in ΔZ. This allows to define the RGI (renormalization group invariant) operator, which is independent of scale and scheme.

$$
Z_{\mathcal{O}}^{\mathrm{RGI}}=Z_{\mathcal{O}}^{\mathrm{RI}^{\prime}}(\mu) \Delta Z_{\mathcal{O}}^{\mathrm{RI}^{\prime}}(\mu)=Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV}) \Delta Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})
$$

Renormalization of fermion field

夫 Original RI-MOM scheme (perturbatively)

$$
Z_{q}^{\mathrm{RI}-\mathrm{MOM}}=-\left.\frac{i}{48} \operatorname{Tr}\left[\gamma_{\rho} \frac{\partial S_{q}^{-1}(p)}{\partial p_{\rho}}\right]\right|_{p^{2}=\mu^{2}}
$$

* RI-MOM not convenient in non-perturbative applications. More appropriate is the RI' scheme:

$$
Z_{q}^{\mathrm{R} \mathrm{R}^{\prime}}=\left.\frac{1}{12} \operatorname{Tr}\left[\frac{-i \sum_{\rho} \gamma_{\rho} \sin \left(p_{\rho}\right)}{\sum_{\rho} \sin \left(p_{\rho}\right)^{2}} S_{q}^{-1}(p)(p)\right]\right|_{p^{2}=\mu^{2}}
$$

\star The two schemes have different conversion functions to the $\overline{\mathrm{MS}}$ scheme

Contributions of Lattice Pert. Theory (2)

* Renormalization of new operators for which non-perturbative prescriptions are not available
* Example: non-local operators containing a Wilson line

$$
\mathscr{O} \equiv \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)
$$

\star Such matrix elements are linked to distribution functions (PDFs, GPDs, TMDs) that characterize the structure of the hadron (quasi-distributions approach)

* Prior 2017 lattice calculations missing a main ingredient:
- Renormalization

Thus, comparison with phenomenological data on PDFs is impossible!

Contributions of Lattice Pert. Theory (2)

Challenges of renormalization prescription development

\star Non-locality of operator

\star Power divergence in lattice regularization
[Dotsenko \& Vergeles, Nucl. Phys. B169 (1980) 527]

$$
e^{-c \frac{|z|}{a}}, \quad c \sim 1
$$

* Renormalizability not proven

Progress in 2017:

- Diagrammatic expansion method [r. Ishikawa et al., PR D 96, 9 (2017) 094019, arXiv:1707.03107]
- Auxiliary heavy quark effective formalism [x. Ji et al., PRL 12011 (2018) 112001, arxiv:1706.08962]

Contributions of Lattice Pert. Theory (2)

* Solution: Lattice perturbation theory

Strategy:

1. Perform the calculation in Dimensional Regularization (DR)
2. Isolate the poles and extract $Z^{D R, \overline{M S}}$
3. Perform the calculation in Lattice Regularization (LR)
4. Extract $Z^{L R, \overline{\mathrm{MS}}}$ using the difference between DR and LR

Contributions of Lattice Pert. Theory (2)

* One-loop calculation of non-local operators in LPT

Feynman diagrams

Contributions of Lattice Pert. Theory (2)

* One-loop calculation of non-local operators in LPT

Feynman diagrams

Most divergent contribution

$$
I_{l a t}=\int \frac{d p^{4}}{(2 \pi)^{4}} \frac{e^{-i n p_{\mu}}-1}{\sin \left(\frac{p_{\mu}}{2}\right)} \frac{\sin \left(p_{\rho}+a q_{\rho}\right)}{\widehat{p}^{2}(\widehat{p+a} q)^{2}}
$$

$I_{l a t}-I_{1}:$ Factorizable integral \Rightarrow Explicit extraction of a-dependence
$I_{1}=\int \frac{d p^{4}}{(2 \pi)^{4}} \frac{e^{-i n p_{\mu}}-1}{\sin \left(\frac{p_{\mu}}{2}\right)}\left(\frac{\sin \left(p_{\rho}+a q_{\rho}\right)}{\widehat{p}^{2}(\widehat{+a} q)^{2}}-\frac{\sin \left(\bar{p}_{\rho}+a q_{\rho}\right)}{\widehat{\bar{p}}^{2}(\widehat{p+a})^{2}}\right)$
$I_{1}-I_{2}:$ Naive $a \rightarrow 0$ limit $: e^{-i n p_{\mu}} \rightarrow 0, a q \rightarrow 0 \Rightarrow$ Constant integral
$I_{2}=\int \frac{d p^{4}}{(2 \pi)^{4}} \frac{e^{-i n p_{\mu}}-1}{p_{\mu} / 2}\left(\frac{p_{\rho}+a q_{\rho}}{p^{2}(p+a q)^{2}}-\frac{\bar{p}_{\rho}+a q_{\rho}}{\bar{p}^{2}(\bar{p}+a q)^{2}}\right)$

$$
I_{2}-I_{3}: \text { Naive } a \rightarrow 0 \text { limit }: e^{-i n p_{\mu}} \rightarrow 0, a q \rightarrow 0 \Rightarrow r \text {-dependent integral }
$$

$I_{3}=\int_{p \leq r} \frac{d p^{4}}{(2 \pi)^{4}} \frac{e^{-i n p_{\mu}}-1}{p_{\mu} / 2}\left(\frac{\left(p_{\rho}+a q_{\rho}\right)}{p^{2}(p+a q)^{2}}-\frac{\left(\bar{p}_{\rho}+a q_{\rho}\right)}{\bar{p}^{2}(\bar{p}+a q)^{2}}\right)$
$=\int_{p \leq r / a} \frac{d p^{4}}{(2 \pi)^{4}} \frac{e^{-i z p_{\mu}}-1}{p_{\mu} / 2}\left(\frac{\left(p_{\rho}+q_{\rho}\right)}{p^{2}(p+q)^{2}}-\frac{\left(\bar{p}_{\rho}+q_{\rho}\right)}{\bar{p}^{2}(\bar{p}+q)^{2}}\right)$.

The extraction of IR divergences is much more complex than in DR.

A generalization of the standard procedure of Kawai et al., in which one subtracts and adds to the original integrand its naïve Taylor expansion.

Here shown in Feynman gauge

Contributions of Lattice Pert. Theory (2)

* One-loop calculation of non-local operators in LPT

Feynman diagrams

Contributions of Lattice Pert. Theory (2)

* One-loop calculation of non-local operators in LPT

Feynman diagrams

Vector operator

$$
\begin{aligned}
& \Lambda_{V_{\mu}}^{1-\text { loop }}=\Lambda_{V_{\mu}}^{\text {tree }}\left[1+\frac{g^{2} C_{f}}{16 \pi^{2}}\left(8+4 \gamma_{E}-\log (16)-4 F_{2}+4 q|z|\left(F_{4}-F_{5}\right)+3 \log \left(\frac{\bar{\mu}^{2}}{q^{2}}\right)+(\beta+2) \log \left(q^{2} z^{2}\right)\right.\right. \\
& +\beta\left[-3+2 \gamma_{E}-\log (4)+2 F_{1}+2\left(q^{2}+2 q_{\mu}{ }^{2}\right) G_{3}-\frac{q^{2} z^{2}}{2}\left(F_{1}-F_{2}\right)\right] \\
& +4 i q_{\mu}\left(-2 G_{1}+G_{2}+z\left(F_{3}-F_{1}+F_{2}\right)\right) \\
& \left.\left.+i \beta q_{\mu}\left[4 G_{1}-4 G_{2}+2 z\left(F_{2}-F_{1}\right)+2 q\left(-2 G_{4}+3 G_{5}\right)\right]\right)\right] \\
& +\phi e^{i q_{\mu} z} \frac{g^{2} C_{f}}{16 \pi^{2}}\left[-\frac{4 q_{\mu}|z|}{q} F_{5}+\beta q_{\mu}\left[z^{2}\left(F_{1}-F_{2}-F_{3}\right)-2 G_{3}+\frac{2|z|}{q} F_{4}\right]\right. \\
& +4 i\left(G_{1}-G_{2}+z\left(F_{3}-F_{1}+F_{2}\right)\right) \\
& \left.+i \beta\left[2\left(G_{2}-G_{1}\right)+2 z\left(F_{1}-F_{2}\right)+q\left(2 G_{4}-2 G_{5}-z|z| F_{5}\right)\right]\right] \\
& F_{1}(q, z)=\int_{0}^{1} d x e^{-i q_{\mu} x z} K_{0}(q|z| \sqrt{(1-x) x}) \\
& F_{2}(q, z)=\int_{0}^{1} d x e^{-i q_{\mu} x z} x K_{0}(q|z| \sqrt{(1-x) x}) \\
& F_{3}(q, z)=\int_{0}^{1} d x e^{-i q_{\mu} x z}(1-x)^{2} K_{0}(q|z| \sqrt{(1-x) x}) \\
& F_{4}(q, z)=\int_{0}^{1} d x e^{-i q_{\mu} x z} \sqrt{(1-x) x} K_{1}(q|z| \sqrt{(1-x) x}) \\
& F_{5}(q, z)=\int_{0}^{1} d x e^{-i q_{\mu} x z}(1-x) \sqrt{(1-x) x} K_{1}(q|z| \sqrt{(1-x) x}) \\
& G_{1}(q, z)=\int_{0}^{1} d x \int_{0}^{z} d \zeta e^{-i q_{\mu} x \zeta} K_{0}(q|\zeta| \sqrt{(1-x) x}) \\
& G_{2}(q, z)=\int_{0}^{1} d x \int_{0}^{z} d \zeta e^{-i q_{\mu} x \zeta} x K_{0}(q|\zeta| \sqrt{(1-x) x}) \\
& G_{3}(q, z)=\int_{0}^{1} d x \int_{0}^{z} d \zeta e^{-i q_{q} x \zeta} \zeta x(1-x) K_{0}(q|\zeta| \sqrt{(1-x) x}) \\
& G_{4}(q, z)=\int_{0}^{1} d x \int_{0}^{z} d \zeta e^{-i q_{\mu} x \zeta}|\zeta| \sqrt{(1-x) x} K_{1}(q|\zeta| \sqrt{(1-x) x}) \\
& G_{5}(q, z)=\int_{0}^{1} d x \int_{0}^{z} d \zeta e^{-i q_{\mu} x \zeta}|\zeta| x \sqrt{(1-x) x} K_{1}(q|\zeta| \sqrt{(1-x) x})
\end{aligned}
$$

Contributions of Lattice Pert. Theory (3)

Qualitative understanding of renormalization pattern

Contributions of Lattice Pert. Theory (3)

Qualitative understanding of renormalization pattern
Example: Non-local operators ... again
Feynman diagrams

Contributions of Lattice Pert. Theory (3)

Qualitative understanding of renormalization pattern
Example: Non-local operators ... again

Feynman diagrams

Final results

$$
\left\langle\psi \mathcal{O}_{\Gamma} \bar{\psi}\right\rangle_{\mathrm{amp}}^{D R, \overline{\mathrm{MS}}}-\left\langle\psi \mathcal{O}_{\Gamma} \bar{\psi}\right\rangle_{\mathrm{amp}}^{L R}=\frac{g^{2} C_{f}}{16 \pi^{2}} e^{i q_{\mu} z} \times \mathcal{F}
$$

$$
\mathcal{F}=\Gamma\left(c_{1}+c_{2} \beta+c_{3} \frac{|z|}{a}+\log \left(a^{2} \bar{\mu}^{2}\right)(4-\beta)\right)+\left(\Gamma \cdot \gamma_{\mu}+\gamma_{\mu} \cdot \Gamma\right)\left(c_{4}+c_{5} c_{\mathrm{SW}}\right)
$$

Contributions of Lattice Pert. Theory (3)

Qualitative understanding of renormalization pattern
Example: Non-local operators ... again

Feynman diagrams

Final results

$$
\left\langle\psi \mathcal{O}_{\Gamma} \bar{\psi}\right\rangle_{\mathrm{amp}}^{D R, \overline{\mathrm{MS}}}-\left\langle\psi \mathcal{O}_{\Gamma} \bar{\psi}\right\rangle_{\mathrm{amp}}^{L R}=\frac{g^{2} C_{f}}{16 \pi^{2}} e^{i q_{\mu} z} \times \mathcal{F}
$$

$$
\mathcal{F}=\Gamma\left(c_{1}+c_{2} \beta+c_{3} \frac{|z|}{a}+\log \left(a^{2} \bar{\mu}^{2}\right)(4-\beta)\right)+\left(\Gamma \cdot \gamma_{\mu}+\gamma_{\mu} \cdot \Gamma\right)\left(c_{4}+c_{5} c_{\mathrm{SW}}\right)
$$

linear divergence

Contributions of Lattice Pert. Theory (3)

Qualitative understanding of renormalization pattern
Example: Non-local operators ... again

Feynman diagrams

Final results

$$
\left\langle\psi \mathcal{O}_{\Gamma} \bar{\psi}\right\rangle_{\mathrm{amp}}^{D R, \overline{\mathrm{MS}}}-\left\langle\psi \mathcal{O}_{\Gamma} \bar{\psi}\right\rangle_{\mathrm{amp}}^{L R}=\frac{g^{2} C_{f}}{16 \pi^{2}} e^{i q_{\mu} z} \times \mathcal{F}
$$

$$
\mathcal{F}=\Gamma\left(c_{1}+c_{2} \beta+c_{3} \frac{|z|}{a}+\log \left(a^{2} \bar{\mu}^{2}\right)(4-\beta)\right)+\left(\Gamma \cdot \gamma_{\mu}+\gamma_{\mu} \cdot \Gamma\right)\left(c_{4}+c_{5} c_{\mathrm{SW}}\right)
$$

Contributions of Lattice Pert. Theory (3)

Qualitative understanding of renormalization pattern
Example: Non-local operators ... again

Feynman diagrams

Final results

$$
\left\langle\psi \mathcal{O}_{\Gamma} \bar{\psi}\right\rangle_{\mathrm{amp}}^{D R, \overline{\mathrm{MS}}}-\left\langle\psi \mathcal{O}_{\Gamma} \bar{\psi}\right\rangle_{\mathrm{amp}}^{L R}=\frac{g^{2} C_{f}}{16 \pi^{2}} e^{i q_{\mu} z} \times \mathcal{F}
$$

$$
\mathcal{F}=\Gamma\left(c_{1}+c_{2} \beta+c_{3} \frac{|z|}{a}+\log \left(a^{2} \bar{\mu}^{2}\right)(4-\beta)\right)+\left(\Gamma \cdot \gamma_{\mu}+\gamma_{\mu} \cdot \Gamma\right)\left(c_{4}+c_{5} c_{\mathrm{SW}}\right)
$$

Unexpected feature!

Contributions of Lattice Pert. Theory (3)

Qualitative understanding of renormalization pattern
Example: Non-local operators ... again

Feynman diagrams

Final results

$$
\left\langle\psi \mathcal{O}_{\Gamma} \bar{\psi}\right\rangle_{\mathrm{amp}}^{D R, \overline{\mathrm{MS}}}-\left\langle\psi \mathcal{O}_{\Gamma} \bar{\psi}\right\rangle_{\mathrm{amp}}^{L R}=\frac{g^{2} C_{f}}{16 \pi^{2}} e^{i q_{\mu} z} \times \mathcal{F}
$$

$$
\mathcal{F}=\Gamma\left(c_{1}+c_{2} \beta+c_{3} \frac{|z|}{a}+\log \left(a^{2} \bar{\mu}^{2}\right)(4-\beta)\right)+\left(\Gamma \cdot \gamma_{\mu}+\gamma_{\mu} \cdot \Gamma\right)\left(c_{4}+c_{5} c_{\mathrm{SW}}\right)
$$

Unexpected feature!
Mixing depends on Dirac structure (Γ) of operators.
If $\left\{\Gamma, \gamma_{\mu}\right\} \neq 0$ mixing occurs

Contributions of Lattice Pert. Theory (3)

Mixing depends on the relation between the current \& Wilson line direction

mixing with

no mixing

no mixing
mixing with

Contributions of Lattice Pert. Theory (3)

Benefits of perturbative calculation:
[M. Constantinou, H. Panagopoulos, PRD 96 (2017) 054506, [arXiv:1705.11193]]

1. Dirac structures that avoid mixing have been implemented (e.g., vector operator for the unpolarized PDF)
2. Understanding the mixing pattern helps develop non-perturbative renormalization prescription
[C. Alexandrou, et al., Nucl. Phys. B 923 (2017) 394 (Frontier Article), [arXiv:1706.00265]]

Contributions of Lattice Pert. Theory (3)

Benefits of perturbative calculation:

[M. Constantinou, H. Panagopoulos, PRD 96 (2017) 054506, [arXiv:1705.11193]]

1. Dirac structures that avoid mixing have been implemented (e.g., vector operator for the unpolarized PDF)

Used until 2017

2. Understanding the mixing pattern helps develop non-perturbative renormalization prescription
[C. Alexandrou, et al., Nucl. Phys. B 923 (2017) 394 (Frontier Article), [arXiv:1706.00265]]
M. Constantinou, EuroPLEx School 2021

Contributions of Lattice Pert. Theory (3)

Benefits of perturbative calculation:
[M. Constantinou, H. Panagopoulos, PRD 96 (2017) 054506, [arXiv:1705.11193]]

1. Dirac structures that avoid mixing have been implemented (e.g., vector operator for the unpolarized PDF)
2. Understanding the mixing pattern helps develop non-perturbative renormalization prescription
[C. Alexandrou, et al., Nucl. Phys. B 923 (2017) 394 (Frontier Article), [arXiv:1706.00265]]

Contributions of Lattice Pert. Theory (3)

Benefits of perturbative calculation:
[M. Constantinou, H. Panagopoulos, PRD 96 (2017) 054506, [arXiv:1705.11193]]

1. Dirac structures that avoid mixing have been implemented (e.g., vector operator for the unpolarized PDF)

2. Understanding the mixing pattern helps develop non-perturbative renormalization prescription
[C. Alexandrou, et al., Nucl. Phys. B 923 (2017) 394 (Frontier Article), [arXiv:1706.00265]]

Contributions of Lattice Pert. Theory (3)

Benefits of perturbative calculation:

[M. Constantinou, H. Panagopoulos, PRD 96 (2017) 054506, [arXiv:1705.11193]]

1. Dirac structures that avoid mixing have been implemented (e.g., vector operator for the unpolarized PDF)

Used until 2017

2. Understanding the mixing pattern helps develop non-perturbative renormalization prescription
[C. Alexandrou, et al., Nucl. Phys. B 923 (2017) 394 (Frontier Article), [arXiv:1706.00265]]

$$
\begin{array}{cc}
\text { Absence of mixing } & \text { Presence of mixing } \\
Z_{\mathcal{O}}(z)=\frac{Z_{q}}{\mathcal{V}_{\mathcal{O}}(z)}, & \binom{\mathcal{O}_{V}^{R}\left(P_{3}, z\right)}{\mathcal{O}_{S}^{R}\left(P_{3}, z\right)}=\hat{Z}(z) \cdot\binom{\mathcal{O}_{V}\left(P_{3}, z\right)}{\mathcal{O}_{S}\left(P_{3}, z\right)},\left.\quad Z_{q}^{-1} \hat{Z}(z) \hat{\mathcal{V}}(p, z)\right|_{p=\bar{\mu}}=\hat{1} \\
\mathcal{V}_{\mathcal{O}}=\left.\frac{\operatorname{Tr}}{12}\left[\mathcal{V}(p)\left(\mathcal{V}^{\text {Born }}(p)\right)^{-1}\right]\right|_{p=\bar{\mu}} & h_{V}^{R}\left(P_{3}, z\right)=Z_{V V}(z) h_{V}\left(P_{3}, z\right)+Z_{V S}(z) h_{S}\left(P_{3}, z\right)
\end{array}
$$

Contributions of Lattice Pert. Theory (4)

Operator improvement

\star Symanzik improvement:
A systematic method to remove discretization effects order by order in a using counter-terms [K. Symanzik, Nucl. Phys. B226 (1983) 187]
\star Further development by Luscher \& Weisz (on-shell quantities) [M. Luscher and P. Weisz, Comm. Math. Phys. 97 (1985) 59]
\star Development of basis of improved operators (off-shell improvement), e.g.,

$$
\left(\mathcal{O}^{S}\right)^{\mathrm{imp}}=(\bar{\psi} \psi)^{\mathrm{imp}}=\left(1+a m c_{0}\right) \bar{\psi} \psi-\frac{1}{2} a c_{1} \bar{\psi} \breve{\nabla} \psi
$$

* Improvement coefficients (e.g., c_{0}, c_{1}) calculated in LPT
[S. Aoki et al., Phys. Rev. D58 (1998) 074505 [hep-lat/9802034]]
[S. Capitani et al., Nucl. Phys. B593 (2001) 183 [hep-lat/0007004]]

Contributions of Lattice Pert. Theory (5)

* First (analytic) calculations to $\mathcal{O}\left(g^{2} a\right)$ (focus on operator improvement)
[S. Capitani et al., Nucl. Phys. B593 (2001) 183 [hep-lat/0007004]] [S. Aoki et al., Phys. Rev. D58 (1998) 074505 [hep-lat/9802034]]

Contributions of Lattice Pert. Theory (5)

\star First (analytic) calculations to $\mathcal{O}\left(g^{2} a\right)$ (focus on operator improvement)
[S. Capitani et al., Nucl. Phys. B593 (2001) 183 [hep-lat/0007004]] [S. Aoki et al., Phys. Rev. D58 (1998) 074505 [hep-lat/9802034]]
\star Another idea on utilizing calculations up to $\mathcal{O}\left(g^{2} a\right)$: calculate analytically contributions beyond leading order in a, and then subtract them from non-perturbative estimates
[M. Constantinou et al., JHEP 10 (2009) 064, [arXiv:0907.0381]]
[M. Constantinou et al. (ETMC), JHEP 08 (2010) 068 [arXiv:1004.1115]]
[C. Alexandrou et al. (ETMC), PRD 83 (2011) 014503[arXiv:1006.1920]]
[M. Constantinou et al., PRD 83 (2011) 014503 [arXiv:1011.6059]]
[C. Alexandrou et al. (ETMC), PRD 86 (2012) 014505 [arXiv:1201.5025]]

Contributions of Lattice Pert. Theory (5)

\star First (analytic) calculations to $\mathcal{O}\left(g^{2} a\right)$ (focus on operator improvement)
[S. Capitani et al., Nucl. Phys. B593 (2001) 183 [hep-lat/0007004]] [S. Aoki et al., Phys. Rev. D58 (1998) 074505 [hep-lat/9802034]]
\star Another idea on utilizing calculations up to $\mathcal{O}\left(g^{2} a\right)$: calculate analytically contributions beyond leading order in a, and then subtract them from non-perturbative estimates

Contributions of Lattice Pert. Theory (5)

* First (analytic) calculations to $\mathcal{O}\left(g^{2} a\right)$ (focus on operator improvement)
[S. Capitani et al., Nucl. Phys. B593 (2001) 183 [hep-lat/0007004]] [S. Aoki et al., Phys. Rev. D58 (1998) 074505 [hep-lat/9802034]]
* Another idea on utilizing calculations up to $\mathcal{O}\left(g^{2} a\right)$: calculate analytically contributions beyond leading order in a, and then subtract them from non-perturbative estimates
pert. calculation \longrightarrow [M. Constantinou et al., JHEP 10 (2009) 064, [arXiv:0907.0381]]
Implementation \longrightarrow [M. Constantinou et al. (ETMC), JHEP 08 (2010) 068 [arXiv:1004.1115]] [C. Alexandrou et al. (ETMC), PRD 83 (2011) 014503[arXiv:1006.1920]] [M. Constantinou et al., PRD 83 (2011) 014503 [arXiv:1011.6059]] [C. Alexandrou et al. (ETMC), PRD 86 (2012) 014505 [arXiv:1201.5025]]
\star Another idea on utilizing calculations up to $\mathcal{O}\left(g^{2} a^{\infty}\right)$:
calculate numerically the Green functions at all order in a, and then subtract them from non-perturbative estimates
[M. Constantinou et al. (QCDSF), PRD 87 (2013) 9, 096019, [arXiv:1303.6776]]
[M. Constantinou et al. (QCDSF), PRD 91 (2015) 1, 014502, [arXiv:1408.6047]]
[C. Alexandrou et al. (ETMC), PRD 95 (2017) 3, 034505, [arXiv:1509.00213]]
[C. Alexandrou et al. (ETMC), arXiv:2104.13408]

Contributions of Lattice Pert. Theory (5)

* First (analytic) calculations to $\mathcal{O}\left(g^{2} a\right)$ (focus on operator improvement)
[S. Capitani et al., Nucl. Phys. B593 (2001) 183 [hep-lat/0007004]] [S. Aoki et al., Phys. Rev. D58 (1998) 074505 [hep-lat/9802034]]
* Another idea on utilizing calculations up to $\mathcal{O}\left(g^{2} a\right)$: calculate analytically contributions beyond leading order in a, and then subtract them from non-perturbative estimates

Implementation \longrightarrow [M. Constantinou et al. (ETMC), JHEP 08 (2010) 068 [arXiv:1004.1115]] [C. Alexandrou et al. (ETMC), PRD 83 (2011) 014503[arXiv:1006.1920]] [M. Constantinou et al., PRD 83 (2011) 014503 [arXiv:1011.6059]] [C. Alexandrou et al. (ETMC), PRD 86 (2012) 014505 [arXiv:1201.5025]]

* Another idea on utilizing calculations up to $\mathcal{O}\left(g^{2} a^{\infty}\right)$:
calculate numerically the Green functions at all order in a, and then subtract them from non-perturbative estimates
[M. Constantinou et al. (QCDSF), PRD 87 (2013) 9, 096019, [arXiv:1303.6776]]
[M. Constantinou et al. (QCDSF), PRD 91 (2015) 1, 014502, [arXiv:1408.6047]]
[C. Alexandrou et al. (ETMC), PRD 95 (2017) 3, 034505, [arXiv:1509.00213]]
[C. Alexandrou et al. (ETMC), arXiv:2104.13408]
Advantage: Synergy between perturbative and non-perturbative results improves final estimates for renormalization functions

Contributions of Lattice Pert. Theory (5)

 Improvement to $\mathcal{O}\left(g^{2} a\right)$ in Z_{q}

1

1-loop diagrams for the fermion propagator
太 Inverse propagator up to $\mathcal{O}\left(g^{2} a\right)$ (massless case):

$$
\begin{aligned}
\sin \left(a p_{\nu}\right) & =a p_{\nu}+\mathcal{O}\left(a^{3}\right) \\
\cos \left(a p_{\nu}\right) & =\delta_{\nu \nu}-\frac{1}{2}\left(a p_{\nu}\right)^{2}+\mathcal{O}\left(a^{4}\right)
\end{aligned}
$$

Contributions of Lattice Pert. Theory (5)

Improvement to $\mathcal{O}\left(g^{2} a\right)$ in Z_{q}

1

2

1-loop diagrams for the fermion propagator
太 Inverse propagator up to $\mathcal{O}\left(g^{2} a\right)$ (massless case):

$$
\begin{align*}
& S_{(p)}^{-1}= i \not p+\frac{a}{2} p^{2}-i \frac{a^{2}}{6} \not p^{3} \\
&-i \not \tilde{p}^{2}\left[\varepsilon^{(0,1)}-4.79200956(5) \lambda+\varepsilon^{(0,2)} c_{\mathrm{SW}}+\varepsilon^{(0,3)} c_{\mathrm{SW}}^{2}+\lambda \ln \left(a^{2} p^{2}\right)\right] \\
&- a p^{2} \tilde{g}^{2}\left[\varepsilon^{(1,1)}-3.86388443(2) \lambda+\varepsilon^{(1,2)} c_{\mathrm{SW}}+\varepsilon^{(1,3)} c_{\mathrm{SW}}^{2}-\frac{1}{2}\left(3-2 \lambda-3 c_{\mathrm{SW}}\right) \ln \left(a^{2} p^{2}\right)\right] \\
&- i a^{2} \ddot{p}^{3} \tilde{g}^{2}\left[\varepsilon^{(2,1)}+0.507001567(9) \lambda+\varepsilon^{(2,2)} c_{\mathrm{SW}}+\varepsilon^{(2,3)} c_{\mathrm{SW}}^{2}\right. \\
&\left.\quad+\left(\frac{101}{120}-\frac{11}{30} C_{2}-\frac{\lambda}{6}\right) \ln \left(a^{2} p^{2}\right)\right] \\
&-i a^{2} p^{2} \not p^{2} \tilde{g}^{2}\left[\varepsilon^{(2,4)}+1.51604667(9) \lambda+\varepsilon^{(2,5)} c_{\mathrm{SW}}+\varepsilon^{(2,6)} c_{\mathrm{SW}}^{2}\right. \\
&\left.\quad+\left(\frac{59}{240}+\frac{c_{1}}{2}+\frac{C_{2}}{60}-\frac{1}{4}\left(\frac{3}{2} \lambda+c_{\mathrm{SW}}+c_{\mathrm{SW}}^{2}\right)\right) \ln \left(a^{2} p^{2}\right)\right] \\
&-i a^{2} \not p \frac{\sum_{\mu} p_{\mu}^{4}}{p^{2}} \tilde{g}^{2}\left[-\frac{3}{80}-\frac{C_{2}}{10}-\frac{5}{48} \lambda\right] \tag{24}
\end{align*}
$$

[M. Constantinou et al., JHEP 10 (2009) 064,

Contributions of Lattice Pert. Theory (5)

 Improvement to $\mathcal{O}\left(g^{2} a\right)$ in Z_{q}

1

2

1-loop diagrams for the fermion propagator
太 Inverse propagator up to $\mathcal{O}\left(g^{2} a\right)$ (massless case):

$$
\begin{aligned}
& S_{(p)}^{-1}= i \not p+\frac{a}{2} p^{2}-i \frac{a^{2}}{6} \not p^{3} \\
&-i \not \tilde{p}^{2}\left[\varepsilon^{(0,1)}-4.79200956(5) \lambda+\varepsilon^{(0,2)} c_{\mathrm{SW}}+\varepsilon^{(0,3)} c_{\mathrm{SW}}^{2}+\lambda \ln \left(a^{2} p^{2}\right)\right] \\
&-a p^{2} \tilde{g}^{2}\left[\varepsilon^{(1,1)}-3.86388443(2) \lambda+\varepsilon^{(1,2)} c_{\mathrm{SW}}+\varepsilon^{(1,3)} c_{\mathrm{SW}}^{2}-\frac{1}{2}\left(3-2 \lambda-3 c_{\mathrm{SW}}\right) \ln \left(a^{2} p^{2}\right)\right] \\
&-i a^{2} \not p^{3} \tilde{g}^{2}\left[\varepsilon^{(2,1)}+0.507001567(9) \lambda+\varepsilon^{(2,2)} c_{\mathrm{SW}}+\varepsilon^{(2,3)} c_{\mathrm{SW}}^{2}\right. \\
&\left.\quad+\left(\frac{101}{120}-\frac{11}{30} C_{2}-\frac{\lambda}{6}\right) \ln \left(a^{2} p^{2}\right)\right] \\
&-i a^{2} p^{2} \not p^{2} \tilde{g}^{2}\left[\varepsilon^{(2,4)}+1.51604667(9) \lambda+\varepsilon^{(2,5)} c_{\mathrm{SW}}+\varepsilon^{(2,6)} c_{\mathrm{SW}}^{2}\right. \\
&\left.\quad+\left(\frac{59}{240}+\frac{c_{1}}{2}+\frac{C_{2}}{60}-\frac{1}{4}\left(\frac{3}{2} \lambda+c_{\mathrm{SW}}+c_{\mathrm{SW}}^{2}\right)\right) \ln \left(a^{2} p^{2}\right)\right] \\
&-i a^{2} \not p \frac{\sum_{\mu} p_{\mu}^{4}}{p^{2}} \tilde{g}^{2}\left[-\frac{3}{80}-\frac{C_{2}}{10}-\frac{5}{48} \lambda\right]
\end{aligned}
$$

[M. Constantinou et al., JHEP 10 (2009) 064, [arXiv:0907.0381]]

Goal is NOT to provide Z_{q} from LPT. We want identify cutoff effects

Contributions of Lattice Pert. Theory (5)

 Improvement to $\mathcal{O}\left(g^{2} a\right)$ in Z_{q}

* Inverse propagator up to $\mathcal{O}\left(g^{2} a\right)$ (massless case):

$$
\begin{gathered}
S_{(p)}^{-1}=i \not p+\frac{a}{2} p^{2}-i \frac{a^{2}}{6} \not p^{3} \\
-i \not p \tilde{g}^{2}\left[\varepsilon^{(0,1)}-4.79200956(5) \lambda+\varepsilon^{(0,2)} c_{\mathrm{SW}}+\varepsilon^{(0,3)} c_{\mathrm{SW}}^{2}+\lambda \ln \left(a^{2} p^{2}\right)\right] \\
-a p^{2} \tilde{g}^{2}\left[\varepsilon^{(1,1)}-3.86388443(2) \lambda+\varepsilon^{(1,2)} c_{\mathrm{SW}}+\varepsilon^{(1,3)} c_{\mathrm{SW}}^{2}-\frac{1}{2}\left(3-2 \lambda-3 c_{\mathrm{SW}}\right) \ln \left(a^{2} p^{2}\right)\right] \\
-i a^{2} \not p^{3} \tilde{g}^{2}\left[\varepsilon^{(2,1)}+0.507001567(9) \lambda+\varepsilon^{(2,2)} c_{\mathrm{SW}}+\varepsilon^{(2,3)} c_{\mathrm{SW}}^{2}\right. \\
\\
\left.+\left(\frac{101}{120}-\frac{11}{30} C_{2}-\frac{\lambda}{6}\right) \ln \left(a^{2} p^{2}\right)\right] \\
-i a^{2} p^{2} \not p^{2} \tilde{g}^{2}\left[\varepsilon^{(2,4)}+1.51604667(9) \lambda+\varepsilon^{(2,5)} c_{\mathrm{SW}}+\varepsilon^{(2,6)} c_{\mathrm{SW}}^{2}\right. \\
\left.\quad+\left(\frac{59}{240}+\frac{c_{1}}{2}+\frac{C_{2}}{60}-\frac{1}{4}\left(\frac{3}{2} \lambda+c_{\mathrm{SW}}+c_{\mathrm{SW}}^{2}\right)\right) \ln \left(a^{2} p^{2}\right)\right] \\
- \\
-i a^{2} \not p \frac{\sum_{\mu} p_{\mu}^{4}}{p^{2}} \tilde{g}^{2}\left[-\frac{3}{80}-\frac{C_{2}}{10}-\frac{5}{48} \lambda\right]
\end{gathered}
$$

$$
\begin{aligned}
& \sin \left(a p_{\nu}\right)=a p_{\nu}+\mathcal{O}\left(a^{3}\right) \\
& \cos \left(a p_{\nu}\right)=\delta_{\nu \nu}-\frac{1}{2}\left(a p_{\nu}\right)^{2}+\mathcal{O}\left(a^{4}\right)
\end{aligned}
$$

[M. Constantinou et al., JHEP 10 (2009) 064, [arXiv:0907.0381]]

* Goal is NOT to provide Z_{q} from LPT. We want identify cutoff effects

Contributions of Lattice Pert. Theory (5)

 Improvement to $\mathcal{O}\left(g^{2} a\right)$ in Z_{q}

太 Inverse propagator up to $\mathcal{O}\left(g^{2} a\right)$ (massless case):

$$
\sin \left(a p_{\nu}\right)=a p_{\nu}+\mathcal{O}\left(a^{3}\right)
$$

 that are also present

$$
S_{(p)}^{-1}=i \not p+\frac{a}{2} p^{2}-i \frac{a^{2}}{6} \not p^{3}
$$

$$
-p_{p} \tilde{g}^{[}\left[\varepsilon^{(0,1)}-4.79200956(5) \lambda+\varepsilon^{(0,2)} c_{\mathrm{SW}}+\varepsilon^{(0,3)} c_{\mathrm{SW}}^{2}+\lambda \ln \left(a^{2} p^{2}\right)\right]
$$

$$
-a p^{2} \tilde{g}^{2}\left[\varepsilon^{(1,1)}-3.86388443(2) \lambda+\varepsilon^{(1,2)} c_{\mathrm{SW}}+\varepsilon^{(1,3)} c_{\mathrm{SW}}^{2}-\frac{1}{2}\left(3-2 \lambda-3 c_{\mathrm{SW}}\right) \ln \left(a^{2} p^{2}\right)\right]
$$

$$
-i a^{2} p^{3} \tilde{g}^{2}\left[\varepsilon^{(2,1)}+0.507001567(9) \lambda+\varepsilon^{(2,2)} c_{\mathrm{SW}}+\varepsilon^{(2,3)} c_{\mathrm{SW}}^{2}\right.
$$ in the non-perturbative

$$
\left.+\left(\frac{101}{120}-\frac{11}{30} C_{2}-\frac{\lambda}{6}\right) \ln \left(a^{2} p^{2}\right)\right]
$$ calculation

$$
\begin{aligned}
& -i a^{2} p^{2} \not \tilde{p}^{2}\left[\varepsilon^{(2,4)}+1.51604667(9) \lambda+\varepsilon^{(2,5)} c_{\mathrm{SW}}+\varepsilon^{(2,6)} c_{\mathrm{SW}}^{2}\right. \\
& \left.+\left(\frac{59}{240}+\frac{c_{1}}{2}+\frac{C_{2}}{60}-\frac{1}{4}\left(\frac{3}{2} \lambda+c_{\mathrm{SW}}+c_{\mathrm{SW}}^{2}\right)\right) \ln \left(a^{2} p^{2}\right)\right] \\
& -i a^{2} \not p \frac{\sum_{\mu} p_{\mu}^{4}}{p^{2}} \tilde{g}^{2}\left[-\frac{3}{80}-\frac{C_{2}}{10}-\frac{5}{48} \lambda\right]
\end{aligned}
$$

[M. Constantinou et al., JHEP 10 (2009) 064, [arXiv:0907.0381]]

* Goal is NOT to provide Z_{q} from LPT. We want identify cutoff effects

Contributions of Lattice Pert. Theory (5)

Improvement to $\mathcal{O}\left(g^{2} a^{2}\right)$ in Z_{q}

\star Strategy:

- Calculate numerically the inverse propagator the values of the action parameters and momentum used in non-perturbative estimate
- Calculate Z_{q} non-perturbatively
- Subtract the artifacts from the estimates

Contributions of Lattice Pert. Theory (5)

Improvement to $\mathcal{O}\left(g^{2} a^{2}\right)$ in Z_{q}

\star Strategy:

- Calculate numerically the inverse propagator the values of the action parameters and momentum used in non-perturbative estimate
- Calculate Z_{q} non-perturbatively
- Subtract the artifacts from the estimates

[M. Constantinou et al. (ETMC), JHEP 08 (2010) 068 [arXiv:1004.1115]]

Contributions of Lattice Pert. Theory (5)

Improvement to $\mathcal{O}\left(g^{2} a^{2}\right)$ in Z_{q}

\star Strategy:

- Calculate numerically the inverse propagator the values of the action parameters and momentum used in non-perturbative estimate
- Calculate Z_{q} non-perturbatively
- Subtract the artifacts from the estimates

Contributions of Lattice Pert. Theory (5)

Improvement to $\mathcal{O}\left(g^{2} a^{2}\right)$ in Z_{q}

\star Strategy:

- Calculate numerically the inverse propagator the values of the action parameters and momentum used in non-perturbative estimate
- Calculate Z_{q} non-perturbatively
- Subtract the artifacts from the estimates

Contributions of Lattice Pert. Theory (5)

Improvement to $\mathcal{O}\left(g^{2} a^{\infty}\right)$ in Z_{q}

* $\mathcal{O}\left(g^{2} a^{2}\right)$ improvement is not sufficient for all lattice actions and simulation parameters

Contributions of Lattice Pert. Theory (5)

Improvement to $\mathcal{O}\left(g^{2} a^{\infty}\right)$ in Z_{q}

* $\mathcal{O}\left(g^{2} a^{2}\right)$ improvement is not sufficient for all lattice actions and simulation parameters

[C. Alexandrou et al. (ETMC), PRD 95 (2017) 3, 034505 , [arXiv:1509.00213]]

FIG. 17: Renormalization of the fermion field for $N_{f}=2$ twisted mass clover-improved fermions. The data correspond to the $\overline{\mathrm{MS}}$ scheme at a reference scale of 2 GeV and are plotted against the initial renormalization scale, $(a \mu)^{2}=(a p)^{2}$.

Contributions of Lattice Pert. Theory (5)

Improvement to $\mathcal{O}\left(g^{2} a^{\infty}\right)$ in Z_{q}

$\star \mathcal{O}\left(g^{2} a^{2}\right)$ improvement is not sufficient for all lattice actions and simulation parameters

[C. Alexandrou et al. (ETMC), PRD 95 (2017) 3, 034505 , [arXiv:1509.00213]]

* Alternative approach: Improvement to $\mathcal{O}\left(g^{2} a^{\infty}\right)$

Contributions of Lattice Pert. Theory (5)

Improvement to $\mathcal{O}\left(g^{2} a^{\infty}\right)$ in Z_{q}

$\star \mathcal{O}\left(g^{2} a^{2}\right)$ improvement is not sufficient for all lattice actions and simulation parameters

[C. Alexandrou et al. (ETMC), PRD 95 (2017) 3, 034505, [arXiv:1509.00213]]

* Alternative approach: Improvement to $\mathcal{O}\left(g^{2} a^{\infty}\right)$

Subtraction to $\mathcal{O}\left(g^{2} a^{\infty}\right)$ leads to a negligible slope because it eliminates cutoff effects

Contributions of Lattice Pert. Theory (5)

Improvement to $\mathcal{O}\left(g^{2} a^{\infty}\right)$ in Z_{q}

* $\mathcal{O}\left(g^{2} a^{2}\right)$ improvement is not sufficient for all lattice actions and simulation parameters

[C. Alexandrou et al. (ETMC), PRD 95 (2017) 3, 034505 , [arXiv:1509.00213]]

FIG. 17: Renormalization of the fermion field for $N_{f}=2$ twisted mass clover-improved fermions. The data correspond to the MS scheme at a reference scale of 2 GeV and are plotted against the initial renormalization scale, $(a \mu)^{2}=(a p)^{2}$

* Alternative approach: Improvement to $\mathcal{O}\left(g^{2} a^{\infty}\right)$

Subtraction to $\mathcal{O}\left(g^{2} a^{\infty}\right)$ leads to a negligible slope because it eliminates cutoff effects

Effectiveness of $\mathcal{O}\left(g^{2} a^{2}\right)$ depends on the operator under study
$\mathcal{O}\left(g^{2} a^{\infty}\right)$-improvement successful for all operators

Contributions of Lattice Pert. Theory (5)

Improvement to $\mathcal{O}\left(g^{2} a^{\infty}\right)$ in Z_{q}

Contributions of Lattice Pert. Theory (5)

 Improvement to $\mathcal{O}\left(g^{2} a^{\infty}\right)$ in Z_{q}
Approach

1. Z_{q} in RI' scheme for multiple ensembles at different pion mass values. Vertex functions calculated for several momenta (renormalization scales)

$$
Z_{q}=\left.\frac{1}{12} \operatorname{Tr}\left[\left(S^{L}\right)^{-1}(p) S^{\text {tree }}(p)\right]\right|_{p^{2}=\mu^{2}}
$$

Contributions of Lattice Pert. Theory (5)

 Improvement to $\mathcal{O}\left(g^{2} a^{\infty}\right)$ in Z_{q}
Approach

1. Z_{q} in RI' scheme for multiple ensembles at different pion mass values. Vertex functions calculated for several momenta (renormalization scales)

$$
Z_{q}=\left.\frac{1}{12} \operatorname{Tr}\left[\left(S^{L}\right)^{-1}(p) S^{\operatorname{tree}}(p)\right]\right|_{p^{2}=\mu^{2}}
$$

Contributions of Lattice Pert. Theory (5)

 Improvement to $\mathcal{O}\left(g^{2} a^{\infty}\right)$ in Z_{q}
Approach

1. Z_{q} in RI' scheme for multiple ensembles at different pion mass values. Vertex functions calculated for several momenta (renormalization scales)

$$
Z_{q}=\left.\frac{1}{12} \operatorname{Tr}\left[\left(S^{L}\right)^{-1}(p) S^{\operatorname{tree}}(p)\right]\right|_{p^{2}=\mu^{2}}
$$

$$
(a p) \equiv 2 \pi\left(\frac{n_{t}}{L_{t}}+\frac{1}{2 L_{t}}, \frac{n_{x}}{L_{s}}, \frac{n_{x}}{L_{s}}, \frac{n_{x}}{L_{s}}\right) \quad \sum_{i} p_{i}^{4} /\left(\sum_{i} p_{i}^{2}\right)^{2}<0.3
$$

Contributions of Lattice Pert. Theory (5)

Improvement to $\mathcal{O}\left(g^{2} a^{\infty}\right)$ in Z_{q}

Approach

1. Z_{q} in RI' scheme for multiple ensembles at different pion mass values.

Vertex functions calculated for several momenta (renormalization scales)

$$
Z_{q}=\left.\frac{1}{12} \operatorname{Tr}\left[\left(S^{L}\right)^{-1}(p) S^{\operatorname{tree}}(p)\right]\right|_{p^{2}=\mu^{2}}
$$

$$
(a p) \equiv 2 \pi\left(\frac{n_{t}}{L_{t}}+\frac{1}{2 L_{t}}, \frac{n_{x}}{L_{s}}, \frac{n_{x}}{L_{s}}, \frac{n_{x}}{L_{s}}\right) \quad \sum_{i} p_{i}^{4} /\left(\sum_{i} p_{i}^{2}\right)^{2}<0.3
$$

$\star \mathcal{O}\left(g^{2} a^{\infty}\right)$-subtraction $\quad Z_{q}^{\mathrm{R}, \text { s.st }}\left(\mu_{0}, m_{\pi}\right)=Z_{q}^{\mathrm{R}}\left(\mu_{0}, m_{\pi}, a\right)-D Z_{q}\left(\mu_{0}, a\right)$

Contributions of Lattice Pert. Theory (5)

Improvement to $\mathcal{O}\left(g^{2} a^{\infty}\right)$ in Z_{q}

Approach

1. Z_{q} in RI' scheme for multiple ensembles at different pion mass values.

Vertex functions calculated for several momenta (renormalization scales)

$$
Z_{q}=\left.\frac{1}{12} \operatorname{Tr}\left[\left(S^{L}\right)^{-1}(p) S^{\operatorname{tree}}(p)\right]\right|_{p^{2}=\mu^{2}}
$$

$$
(a p) \equiv 2 \pi\left(\frac{n_{t}}{L_{t}}+\frac{1}{2 L_{t}}, \frac{n_{x}}{L_{s}}, \frac{n_{x}}{L_{s}}, \frac{n_{x}}{L_{s}}\right) \quad \sum_{i}^{-} p_{i}^{4} /\left(\sum_{i} p_{i}^{2}\right)^{2}<0.3
$$

$\star \mathcal{O}\left(g^{2} a^{\infty}\right)$-subtraction $\quad Z_{q}^{\mathrm{R}, \text { s.st }}\left(\mu_{0}, m_{\pi}\right)=Z_{q}^{\mathrm{R}}\left(\mu_{0}, m_{\pi}, a\right)-D Z_{q}\left(\mu_{0}, a\right)$

Nf=2 twisted mass fermions

$a \mu$	κ	$a M_{P S}$	lattice size
$\beta=2.10, a=0.093 \mathrm{fm}, c_{\text {sw }}=1.57551$			
0.0009	0.13729	$0.0621(2)$	$48^{3} \times 96$
0.0030	0.1373	$0.110(4)$	$24^{3} \times 48$
0.0060	0.1373	$0.160(4)$	$24^{3} \times 48$

Contributions of Lattice Pert. Theory (5)

 Improvement to $\mathcal{O}\left(g^{2} a^{\infty}\right)$ in Z_{q}
Approach

1. Z_{q} in RI' scheme for multiple ensembles at different pion mass values.

Vertex functions calculated for several momenta (renormalization scales)

$$
Z_{q}=\left.\frac{1}{12} \operatorname{Tr}\left[\left(S^{L}\right)^{-1}(p) S^{\text {tree }}(p)\right]\right|_{p^{2}=\mu^{2}}
$$

$$
(a p) \equiv 2 \pi\left(\frac{n_{t}}{L_{t}}+\frac{1}{2 L_{t}}, \frac{n_{x}}{L_{s}}, \frac{n_{x}}{L_{s}}, \frac{n_{x}}{L_{s}}\right) \quad \sum_{i}^{-} p_{i}^{4} /\left(\sum_{i} p_{i}^{2}\right)^{2}<0.3
$$

* $\mathcal{O}\left(g^{2} a^{\infty}\right)$-subtraction

$$
Z_{q}^{\mathrm{RI}, \text { sub }}\left(\mu_{0}, m_{\pi}\right)=Z_{q}^{\mathrm{RI}}\left(\mu_{0}, m_{\pi}, a\right)-D Z_{q}\left(\mu_{0}, a\right)
$$

2. Chiral extrapolation

$$
Z_{q}^{\mathrm{RI}}\left(\mu_{0}, m_{\pi}\right)=\mathscr{Z}_{q}^{\mathrm{RI}}\left(\mu_{0}\right)+m_{\pi}^{2} \bar{Z}_{q}^{\mathrm{RI}}\left(\mu_{0}\right)
$$

Nf=2 twisted mass fermions

$a \mu$	κ	$a M_{P S}$	lattice size
$\beta=2.10, a=0.093 \mathrm{fm}, c_{\text {sw }}=1.57551$			
0.0009	0.13729	$0.0621(2)$	$48^{3} \times 96$
0.0030	0.1373	$0.110(4)$	$24^{3} \times 48$
0.0060	0.1373	$0.160(4)$	$24^{3} \times 48$

[C. Alexandrou et al. (ETMC), PRD 95 (2017) 3, 034505 ,
[arXiv:1509.00213]]

Renormalization of fermion field

1-loop lattice perturbation theory with Wilson-type fermions

Feynman diagrams

1

2

Two types of vertices

$$
\begin{gathered}
\bar{\psi} \psi A=g \delta\left(k_{1}-k_{2}+k_{3}\right)\left(i \cos \left(\frac{\left(k_{2}+k_{3}\right)_{\mu}}{2}\right) \gamma^{\mu}+\sin \left(\frac{\left(k_{2}+k_{3}\right)_{\mu}}{2}\right) \hat{1}-c_{\mathrm{SW}} \cos \left(\frac{\left(k_{1}\right)_{\mu}}{2}\right)\left[\gamma^{\nu}, \sin \left(\frac{\left(k_{1}\right)_{\rho}}{2}\right) \gamma^{\rho}\right] / 4\right) \\
\bar{\psi} \psi A A=g^{2} \delta\left(k_{1}+k_{2}-k_{3}+k_{4}\right)\left(i \frac{1}{2} \delta_{\mu \nu} \sin \left(\frac{\left(k_{3}+k_{4}\right)_{\mu}}{2}\right) \gamma^{\mu}+\frac{1}{2} \delta_{\mu \nu} \cos \left(\frac{\left(k_{3}+k_{4}\right)_{\mu}}{2}\right) \hat{1}+12 \text { terms with } \mathrm{c}_{\mathrm{SW}}\right) \\
d 1=\frac{g^{2}}{8} \frac{N_{c}^{2}-1}{N_{c}} \int d k\left[\frac{2 i \gamma^{\rho} \sin \left(q_{\rho}\right)+2 \hat{1} \cos \left(q_{\rho}\right)}{\operatorname{prop}(k)_{\rho \rho}}+c_{\mathrm{SW}} \frac{\cos \left(\frac{k_{\rho}}{2}\right) \cos \left(\frac{k_{c}}{2}\right)\left[\gamma^{\rho}, \gamma^{\sigma}\right]}{\operatorname{prop}(k)_{\rho \sigma}}\right]: \text { convergent } \\
d 2=g^{2} \frac{N_{c}^{2}-1}{N_{c}}\left[\operatorname{aLog}\left[q^{2}\right]+b\right]
\end{gathered}
$$

D2 contains divergences

Renormalization of fermion field

Extension to 2-loops

太 Several complications compared to 1-loop:

- More Feynman diagrams
- Vertices with more gluons

3

9

15

21

4

22

5

10

16

都

Thank you

