

Jorge Gomes <jorge@lip.pt> / Isabel Campos <isabel@campos-it.es>

Scientific Computing
with

Linux Containers

Scientific computing and containers

Computers

• Several computing systems

• Notebooks, Desktops, Farms, Cloud, Large HPC machines

OSes

• Several operating systems

• Linux flavors, Distributions, Versions

Environments

• Specific computing environments

• Compilers, Libraries, Customizations, Specialized Hardware

Applications

• Multiple applications

• Portability, Maintainability, Reproducibility

Running across systems often requires considerable effort

Containers can provide a consistent portable environments
to execute software applications and services

EXALAT - Lattice Field Theory at the Exascale

Application
source code

Libraries
+

OS kernel
+

Hardware

traditional

Application
binary

+
Libraries
OS kernel

Virtual
Hardware
e.g. cloud

virtualization

Application
binary

+
Libraries

dependencies

OS kernel
+

Hardware
containers

App X

Kernel

App Y

Container Engine Runtime

Hardware

/bin, /lib /bin, /lib

App Z

/bin, /lib

App X App Y App Z

Kernel

/bin/, /lib, ...

Hardware

App X

Hypervisor

App Y

Hardware

/bin, /lib /bin, /lib

App Z

/bin, /lib

Kernel Kernel Kernel

EXALAT - Lattice Field Theory at the Exascale

Advantages: Containers vs Traditional

• Encapsulation
– Applications and dependencies are packed together
– Portability across systems
– Easier to distribute and share ready to use software

• Reproducibility
– The whole run-time environment is in the container
– Can be easily stored for later reuse, replay or preservation

• Isolation
– Provides run-time environments that are independent from the host
– May provide a limited root environment
– May provide extra security to contain the applications
– May provide resource usage limits for QoS

• Less effort
– Easier maintenance and deployment

EXALAT - Lattice Field Theory at the Exascale

Linux System Call Interface (SCI)

User application / service

libc libasound libDRM ...

System Call Interface

Kernel

U
s

e
r

S
p

a
c

e

G
o

e
s

 i
n

to
 t

h
e

 c
o

n
ta

in
e

r

K
e

rn
e

l
S

p
a

c
e

P
ro

v
id

e
d

 b
y

 t
h

e
 H

o
s

t

EXALAT - Lattice Field Theory at the Exascale

etc bin

ls

lib

Container file system with chroot
C

o
n
ta

in
e
r

mount(“VOL” , “/mnt” ,…);
chdir(“/mnt”);
chroot(“.”);
pivot_root(“.”, “.”);
execl(“/bin/ls”, …);

VOL

• Using mount usually requires
privileges (CAP_SYS_MOUNT)
• Can use FUSE e.g. libguestfs

• Using chroot and pivot_ root
usually requires privileges
(CAP_SYS_CHROOT)
• Can use user namespaces

EXALAT - Lattice Field Theory at the Exascale

/

etc bin mnt lib dev

Linux kernel features for isolation

• chroot, pivot_root: make a given directory root of the file system
• Kernel namespaces: isolate system resources from process

– Mount: isolate mount points (cannot see host or other containers mounts)
– UTS: virtualize hostname and domain
– IPC : inter process communications isolation (semaphores, shmem, msgs)
– PID: isolate and remap process identifiers (cannot see other processes)
– Network: isolate network resources (interfaces, tables, firewall etc)
– cgroup: isolate cgroup directories
– User: isolate and remap user/group identifiers (user can be a limited root)
– Time: virtualize boot and monotonic clocks

• cgroups: process grouping and resource consumption limits
• seccomp: system call filtering
• POSIX capabilities: split and drop root privileges
• AppArmor and SELinux: kernel access control

EXALAT - Lattice Field Theory at the Exascale

Linux user namespace

Available only on recent kernels/distributions

• Allows an unprivileged user to have a different UID/GID
• Enables an unprivileged user to become UID 0 root
• Enables executing the chroot and mount calls

• May require some setup of subuid and subgid files
• Network namespace becomes useless
• root has limitations

• Cannot creates devices (mknod)
• Cannot load kernel modules
• Mount is restricted to some file system types
• Issues on changing user ids group ids
• Accessing files in the host (mount bind) can become problematic

• Not available/enabled in some distributions (notably RedHat/CentOS)

EXALAT - Lattice Field Theory at the Exascale

Containers

Therefore simple and efficient

Run programs as processes in a standard way

No hardware emulation or vm hypervisors

Just a separate process environment

EXALAT - Lattice Field Theory at the Exascale

docker

• Docker is oriented to services and services composition:
– One service or application per container plus dependencies
– Containers can be published in public or private repositories
– Relies heavily on kernel functionalities such as namespaces
– Run the container everywhere (in any compatible Linux kernel)

• DevOps  integration of IT development and operations

– docker has been a key technology enabling automation and DevOps
– Developers: develop, produce containers, push them to production
– Administrators: manage the underlying physical/virtual infrastructure

$ docker run -i -t centos:centos6
[root@28f89ada747e /]# cat /etc/redhat-release
CentOS release 6.8 (Final)

docker

EXALAT - Lattice Field Theory at the Exascale

container images can be fetched from the docker hub repository

docker hub

EXALAT - Lattice Field Theory at the Exascale

Uses a layered file-system based
– Implemented at host level by: AUFS

New images can be easily created from existing ones
– Created by using Dockerfiles and docker build

Layers can be shared decreasing bandwidth and storage usage

 Layers

1. FROM centos:centos6
2. RUN yum install –y httpd php
3. COPY /my/app /var/www/app
4. EXPOSE 80
5. ENTRYPOINT /usr/sbin/httpd
6. CMD [“-D”, “FOREGROUND”]

Dockerfile

Layer 1: centos:latest (ro)

Layer 2: apache + php (ro)

Layer 3: /var/www/app (ro)

Top layer execution (rw)

docker images

EXALAT - Lattice Field Theory at the Exascale

docker execution
user processes
i.e. programs, services

chroot
file system tree

namespaces
process isolation

seccomp
system call filtering

selinux/apparmor
access control

EXALAT - Lattice Field Theory at the Exascale

Require root privileges to install, setup and run

• Raises security concerns especially in multi-user environments

docker API does not limit privileged actions

• Users with direct access to the API can do anything

• e.g: through the API users can mount local file systems, make devices
accessible, etc.

Not oriented to end users

• docker is designed to be used as an hypervisor by DevOps & admins

• Client server model, processes run under the docker daemon

• Not suitable to batch systems because of process control, accounting and
security

• Inside the container the user is usually root

• Requires separate network namespace, NAT and virtual networking

docker limitations

EXALAT - Lattice Field Theory at the Exascale

Other solutions

Container engine originated by docker now developed
by the Open Containers Initiative (OCI)

runC

• Key aspects:
 Is the runtime used by docker and other tools to execute containers
 Contrary to docker has a fork and execute model (no daemon processes)
 Focused on running images in OCI format
 Requires privileges for full functionality
 Can run without privileges using user namespaces

• Limitations:

 Is mostly an execution runtime to be used by other tools
 Downloading containers etc must be performed with other tools
 Requires a description of the container environment OCI bundle spec
 Running without privileges has limited functionality

EXALAT - Lattice Field Theory at the Exascale

Container engine oriented to computing clusters

Singularity

• Key aspects:
 Has its own image format and repository
 Can also pull images from docker
 Fork and execute model (no daemon processes)
 Meant to be used by the end-users
 Requires installation by administrator and setuid privileges for full

functionality
 If setuid is unavailable can run without privileges using user namespaces

• Limitations:

 History of security vulnerabilities
 Running without privileges has limited functionality

 EXALAT - Lattice Field Theory at the Exascale

Container engine for developing, managing, and running
OCI Containers

Podman

• Key aspects:
 Alternative drop-in replacement for docker
 Has a fork and execute model
 Uses the OCI images format, but also supports docker images
 Requires privileges for full functionality
 Can run without privileges using user namespaces

• Limitations:

 Running without privileges has limited functionality
 Not suitable for user execution with privileges via setuid

EXALAT - Lattice Field Theory at the Exascale

Engine oriented to run using user namespaces in
computing clusters

Charliecloud

• Key aspects:
 Has a fork and execute model
 Only runs without privileges using user namespaces
 Executes a file-system tree already extracted to some directory

• Limitations:

 Does not support pulling or extracting container images
 Requires docker and/or other tools for most operations except running

the container
 Same limitations that apply to user namespaces

EXALAT - Lattice Field Theory at the Exascale

udocker motivations

Run applications encapsulated in docker containers:
• without using docker
• without using privileges
• without system administrators intervention
• without additional system software

and run:

• as a normal user from the command line
• fork and execute model
• normal process controls and accounting apply
• suitable for interactive or batch systems

Empowers end-users to run applications in containers

EXALAT - Lattice Field Theory at the Exascale

https://github.com/indigo-dc/udocker
• https://github.com/indigo-dc/udocker/tree/master
• https://github.com/indigo-dc/udocker/tree/devel

Python 2 & 3
• https://github.com/indigo-dc/udocker/tree/devel3

udocker other advantages

Install:
• Just get the udocker python script and execute
• No need to install or compile additional software
• No need of system administrator intervention

Get images:

• Pull containers from docker compatible repositories
• Load and save docker and OCI formats
• Import and export tarballs
• Extract images to file system

Run:
• Integrates and provides several execution engines

 EXALAT - Lattice Field Theory at the Exascale

ptrace
(proot)

shared lib
(fakechroot)

user
namespaces

(runC)

pull import load

container
layers

OS system
trees

create

run

u
d

o
cker lo

cal rep
o

sito
ry

extract

prepare

store

access
namespaces
(singularity)

udocker is an integration tool

EXALAT - Lattice Field Theory at the Exascale

simple

pathname

translation

no namespaces

no chroot

no mounts

Lattice QCD

Scaling
performance as a
function of the
cores for the
computation of
application of the
Dirac operator to
a spinor field.

Using OpenMPI

OpenQCD is a
very advanced
code to run lattice
simulations

udocker in P1 mode

EXALAT - Lattice Field Theory at the Exascale

Running with udocker

$ mpiexec -np 128 udocker run \

 -e LD_LIBRARY_PATH=/usr/lib \

 --hostenv \

 --hostauth \

 --user=cscdiica \

 -v /tmp \

 --workdir=/opt/projects/openQCD-1.6/main \

 openqcd \

 /opt/projects/openQCD-1.6/main/ym1 \
 -i ym1.in -noloc

EXALAT - Lattice Field Theory at the Exascale

Biomolecular complexes

Performance
with docker and
udocker are the
same and very
similar to the
host.

Using OpenCL and
NVIDIA GPGPUs

DisVis is being
used in
production with
udocker

Better performance with Ubuntu 16 container
udocker in P1 mode

EXALAT - Lattice Field Theory at the Exascale

Molecular dynamics

udocker P mode
have lower
performance
udocker F mode
same as Docker.

Using OpenCL and
OpenMP

Gromacs is widely
used both in
biochemical and
non-biochemical
systems.

udocker in P1 mode
udocker in F3 mode PTRACE SHARED LIB CALL

EXALAT - Lattice Field Theory at the Exascale

TensorFlow

EXALAT - Lattice Field Theory at the Exascale

Challenges

but ...

seccomp pid namespace

mount namespace

ipc namespace net namespace

user namespace

Wizard with root powers

Container

Security in containers

Clone
unshare
mount
chroot

EXALAT - Lattice Field Theory at the Exascale

• issues related to

privilege escalation

• mitigation of

performance impact

• trust and provenance

Other challenging aspects
• Simplify usage of the software and hardware environment

• Access and interoperate - host drivers, MPI , tight integration

• Productization of software
• Automate production of application containers for the targets (CI/CD)

• Scalability
• Processing, communications and I/O – benchmarking and optimization

• Sharing of large machines by heterogeneous workloads
• Resource usage control - Quality of Service

• Heterogeneous hardware
• Running in different architectures X86_64, ARM, RISC-V

• Going beyond conventional batch systems
• Mesos, Kubernetes – containers as the execution unit

• Standardization
• Creating, accessing and running - OCI

EXALAT - Lattice Field Theory at the Exascale

Productization with DevOps

EXALAT - Lattice Field Theory at the Exascale

Thank
you !

Produce container images
for the targeted machines

• images prepared for targets
• easier sharing of binaries
• software provenance
• reproducibility
• reusability
• software preservation
• software quality assurance

from the talk of Antonin Portelli (RBC-UKQCD)

Advantages: Containers vs Virtualization

• Low memory consumption
– No need of duplicated kernels and OS related processes
– No duplication of buffering and memory from multiple kernels
– Less memory split across execution domains

• Very close to native performance
– Direct execution on top of the host kernel
– No emulation, No hypercalls, No buffer copies

• Don’t need to run OS services in each isolated environment
– No need of duplicated NTP, SNMP, CRON, DHCP, SYSLOG, SMART, etc

• Much faster start–up times
– No OS boot, smaller images to transfer and store

• Less effort
– Most management effort shifted to the host system

 EXALAT - Lattice Field Theory at the Exascale

LXD

Kubernetes

Nutanix Karbon

docker swarm

skopeo

docker

runC

• udocker is an integration tool:
• Supports several techniques and engines to execute containers
• They are selected per container id via execution modes

Execution methods

Mode Base Description

P1 PRoot PTRACE accelerated (with SECCOMP filtering)  DEFAULT

P2 PRoot PTRACE non-accelerated (without SECCOMP filtering)

R1 runC rootless unprivileged using user namespaces

F1 Fakechroot with loader as argument and LD_LIBRARY_PATH

F2 Fakechroot with modified loader, loader as argument and LD_LIBRARY_PATH

F3 Fakechroot modified loader and ELF headers of binaries + libs changed

F4 Fakechroot modified loader and ELF headers dynamically changed

S1 Singularity where locally installed using chroot or user namespaces

EXALAT - Lattice Field Theory at the Exascale

Application

Containers

Easy packaging

(Dockerfiles)

Well defined
efficient format
(Docker or OCI

containers)

Easy distribution
and sharing

(Docker Hub or
other

repositories)

Isolation from
changing

environment
(Portability)

Create once and
run when
necessary

(Maintainability)
Self contained
environment

(Reproducibility)

Base for new
containers

(Reusability)

Isolation from
hosts and other

containers
(security)

Low overhead
(baremetal

performance)

Container benefits

EXALAT - Lattice Field Theory at the Exascale

