

EUROHPC AND COMPANY: A ROADMAP TOWARDS EXASCALE

Dirk Pleiter | EXALAT Kick-off Workshop | 16.06.2020

- Joint Undertaking EuroHPC
- EuroHPC's research and innovation agenda
- Towards a European data infrastructure
- Summary and outlook

JOINT UNDERTAKING EUROHPC

Joint Undertaking EuroHPC

Joint Undertaking

- Legal entity involving European Commission, EuroHPC Member States, private members
 - 32 member states
 - Private members: ETP4HPC, BDVA

Mission

- Develop, deploy, extend and maintain in the European Union (EU) an integrated world-class supercomputing and data infrastructure
- Develop and support a highly competitive and innovative HPC ecosystem

Achieved milestones

- November 2018: Establishment of the Joint Undertaking
- July 2019: Publication of first calls for Research and Innovation actions
- November 2019: Call for tenders for 3 pre-exascale systems

5

Infrastructure Advisory Group (INFRAG) Role: provides advice to the Governing Board for the acquired

 Role: provides advice to the Governing Board for the acquisition and operation of the EuroHPC supercomputers, drawing up and regularly updating the draft multi-annual strategic agenda for such acquisition

Governing Board

Main decision body

Organisation

• Composition: European Commission, member states

EuroHPC office + Executive Director

Research and Innovation Advisory Group (RIAG)

• Role: Create and regularly update the draft multi-annual strategic research and innovation agenda

Upcoming EuroHPC Infrastructure: Plans

Pre-exascale systems

- Target HPL performance: >150 PFlop/s per system
- Acquisition budget: 120-150 MEUR
 - Up to 50% of TCO funded by EuroHPC, other by hosting entity
- Awarded hosting entities
 - Leonardo@CINECA (Italy)
 - LUMI@CSC (Finland)
 - Mare Nostrum 5@BSC (Spain)
- 10-20 MW power envelope \rightarrow GPUs likely to play a key role
 - But not planned to be monolithic systems like Summit or Sierra

Petascale systems

 IT4Innovations (Czech Republic), LuxConnect (Luxembourg), University of Minho (Portugal), Maribor (Slovenia) and Sofia (Bulgaria)

6

Upcoming EuroHPC Infrastructure: Status

Pre-exascale systems

- Call for tenders launched in November 2019
 - Competitive dialogue \rightarrow likely >6 months until awarding contracts
- Installation of (at least phase 1 of) the systems by end of 2020
- Operations starting early 2021

Petascale systems

- All tenders launched (last in May 2020)
- \bullet Direct procedure \rightarrow fast awarding of contracts possible

EUROHPC: R&I AGENDA

ETP4HPC's Strategic Research Agenda

ETP4HPC = European Technology Platform for HPC

- Private, industry-led organisation
- Main mission: promote European HPC research and innovation

Regularly updates a Strategic Research Agenda

• Goal: Outlines a roadmap for the achievement of exascale capabilities by the European High-Performance Computing (HPC) ecosystem

Work results from open working groups

- System Architecture
- System Hardware Components
- System Software & Management
- Programming Environment
- I/O & Storage
- Mathematics & Algorithms
- Application co-design
- Centre-to-Edge Framework

9

https://www.etp4hpc.eu/sra.html

Topics Relevant to the LQCD Community

System architectures

- Integration of heterogeneous resources
- Network

System Hardware Components

• Integration and packaging

I/O and storage

- Integration of non-volatile memory in the I/O stack
- Memory-style addressing of persistent storage
- Automatic placement of data

Mathematical methods and algorithms

- Robust methods and algorithms enabling extreme scalability
 - Increase of parallelism, reduction of synchronisation
 - Exploitation of reduce precision and new floating-point formats
- Vertical integration and validation of mathematical methods and algorithms

European Processor Initiative (EPI)

Mission

- European independence in High Performance Computing Processor Technologies
 - EU Exascale machine based on EU processor by 2023
- Based on solid, long-term economic model, Go beyond HPC market
- Address the needs of European industry
 - Example: car manufacturing market

Organisation

- 27 partners from 10 European countries
- Including company founded to produce EPI processors: SiPearl

EPI: Common Platform Approach

Integration of different technological components

• E.g. Tiles with Arm cores, RISC-V accelerators, MPPA, eFPGA, ...

Global approach for power management and security

Modular approach allows (in principle) flexible customization

16.06.2020

13

Based on established processor core technology First generation based on Arm's Zeus core

Zeus is part of Arm's Neoverse processor family

- High-performance processors for AI, Cloud, HPC and edge
- Aim for processor designs with large number of cores
- Armv8-A ISA

Support for Scalable Vector Extension

• Key feature: Vector length agnostic

EPI: GPP Stream

- Vector length not defined at compile time
- Required hardware support for VLA
 - Update of predication registers
 - Update of loop counters

EPI: Accelerator Stream

Vector processing unit

• Based on RISC-V vector ISA

Domain specific accelerators

- Stencil/tensor accelerator (STX)
- Variable precision processor

16.06.2020

TOWARDS A EUROPEAN DATA INFRASTRUCTURE

European Open Science Cloud (EOSC)

Initial mission statement

• The main goal of the EOSC initiative was to offer European researchers a virtual environment with free, open, and seamless services for the storage, management, analysis and re-use of research publications, data and software that are linked to their research activities across borders and disciplines

Focus on FAIR data policy

• Principles of find-ability, accessibility, interoperability, and re-usability

Emerging cloud and data infrastructure

- Common AAI
- Efforts towards solutions for long-term archiving of large quantities of open data
- Cloud services for, e.g., data analysis workflows
- Opportunities for better integration with HPC infrastructures

From ILDG to EOSC?

International Lattice Data Grid	EOSC-based Solution
X.509 certificate-based authentication challenging	Industry-standard token-based solutions (OIDC, SAML)
Proprietary, difficult to install clients	Clients based on software-components support in typical Linux distributions/Python package managers
Lacking integration of integration of HPC systems and federated data infrastructure	Projects working towards better integration of HPC and Cloud-based storage resources (e.g. Fenix)

SUMMARY AND OUTLOOK

Summary and Outlook

EuroHPC's future infrastructure

- Successful effort for putting 3 pre-exascale systems in place
- Precursor for exascale systems

Upcoming R&D efforts

- LQCD applications not a key focus, but opportunities for LQCD applications to benefit
 - Higher visibility through Centres of Excellence would be beneficial

European Processor Initiative

- Arm SVE + use of high-bandwidth memory technologies interesting for LQCD
- Opportunities related to accelerators to be explored

European data infrastructure

• New opportunities for sharing LQCD data

