FASTSUM: simulations of hot and dense QCD

Jon-Ivar Skullerud

Maynooth University, FASTSUM Collaboration

EXALat, 17 June 2020

Outline

Background

Physics highlights

Code and resources

FASTSUM members

Gert Aarts (Swansea) Chris Allton (Swansea) Tim Burns (Swansea) Benjamin Jäger (Odense) Seyong Kim (Sejong) Maria-Paola Lombardo (Firenze) Aleksandr Nikolaev (Swansea→ARM) Sinéad Ryan (Trinity College Dublin) Jon-Ivar Skullerud (Maynooth) Liang-Kai Wu (Jiangsu)

Current students

Sergio Chaves, Alan Kirby, Sam Offler, Thomas Spriggs, Dawid Stasiak (Swansea) Luke Gayer (TCD)

Former members

Ale Amato (Swansea→Helsinki→) Davide de Boni (Swansea→) Wynne Evans (Swansea→) Pietro Giudice (Swansea→) Jonas Glesaaen (Swansea→) Tim Harris (TCD→Mainz→Milano) Aoife Kelly (Maynooth→) Buğra Oktay (TCD→Utah→) Kristi Praki (Swansea→) Ryan Quinn (Maynooth→) Don Sinclair (Argonne)

Background

Challenges

- Nature of transition as $m_{ud} \rightarrow 0$
- Equation of state, higher order cumulants (skewness, kurtosis)
- Existence of critical point at $(T, \mu) > 0$
- Transport properties (conductivity, viscosity, jet quenching)
- Hadron properties:

in-medium modifications, heavy quarkonium

- Effect of magnetic field, chiral magnetic effect
- Cold dense QCD (sign problem)

Projects

Dynamical anisotropic lattices

Temperature $T = \frac{1}{L_{\tau}} = (N_{\tau}a_{\tau})^{-1}$ Main thermodynamics interest: spectral properties

$$\rho(\omega) = \operatorname{Im} G_R(\omega) = \operatorname{Im} \int_0^\infty G_R(t) e^{-i\omega t}$$
$$G_E(\tau; T) = \int_0^\infty d\omega K(\omega, \tau; T) \rho(\omega; T)$$

- ► A large number of points in time direction required
- Fixed-scale approach
 - ightarrow vary T by varying $N_{ au}$ (not a)
 - $\rightarrow~$ need only 1 ${\it T}=0$ calculation for renormalisation
 - \rightarrow independent handle on temperature
- Introduces 2 additional parameters
- Non-trivial tuning problem
 [PRD 74 014505 (2006); HadSpec Collab, PRD 79 034502 (2009)]

Other approaches

Fixed- N_{τ} approach

- Isotropic lattices, $a_s = a_\tau = a$
- Fix N_{τ} , vary T by varying a
- T can be changed continuously near T_{pc}
- ► Current state-of-the-art: N_{\tau} = 12-16, N_{cfg} =10k-1M per temperature
- Most studies use staggered fermions

Isotropic Wilson fermion simulations

- WHOT-QCD: Clover, fixed-scale ($N_{ au} = 16-4$), Wilson flow
- tmfT: twisted-mass, using ETMC parameters, $N_{\tau} = 24-4$.
- Mainz: Fixed T, using CLS parameters + smaller a for continuum extrapolation

Simulation parameters

[PRD 76 194513 (2007), HadSpec Collab, PRD 79 034502 (2009)]

Gen	N _f	ξ	a_s (fm)	$a_{ au}^{-1}$ (GeV)	m_{π} (MeV)	Ns	L_s (fm)
1	2	6.0	0.162	7.35	490	12	1.94
2	2+1	3.5	0.123	5.63	390	24	2.95
						32	3.94
2L	2+1	3.5	0.123	5.63	240	32	3.94
3	2+1	7.0	*0.123	*11.66	*390	32	3.94

Simulation parameters: temperatures

	Gen 2			Gen 2L	
$N_{ au}$	T (MeV)	T/T_c	$N_{ au}$	T (MeV)	T/T_c
128	44	0.24	128	47	0.29
			64	94	0.59
			56	107	0.67
48	117	0.63	48	125	0.78
40	141	0.76	40	150	0.94
36	156	0.84	36	167	1.04
32	176	0.95	32	187	1.17
28	201	1.09	28	214	1.34
24	235	1.27	24	250	1.56
20	281	1.52	20	300	1.87
16	352	1.90	16	375	2.34
			12	500	3.12
			8	750	4.69

Physics highlights

Electrical conductivity

Open charm

Physics highlights — Barvons at high T

Forward propagating: + parity; Backward propagating: - parity

Measure of parity doubling:

$$R(\tau) = \frac{G(\tau) - G\beta - \tau)}{G(\tau) + G(\beta + \tau)}$$
$$R = \sum_{n=0}^{\beta/2-1} \frac{R(\tau_n)/\sigma^2(\tau_n)}{1/\sigma^2(\tau_n)}$$

Physics highlights — Taylor expansion

• Part of μ^2 coefficient on Gen2 ensemble

- High temperature
- Free vs interacting: some visible differences

Physics highlights: Complex Langevin

Polyakov loop as function of μ and T, heavy-dense QCD

Recent and current grants PRACE

- Call 3: 22M (BG/Q JuQueen)
- Call 5: 32M (BG/Q Fermi@CINECA)
- Call 12: 40M (BG/Q Fermi, KNL Marconi@CINECA)
- Call 18: 30M (Broadwell Galileo@CINECA, Rome AMD Irene@CEA)

DiRAC

- Call 1: 200M (BG/Q)
- Call 7: 400M (BG/Q)
- Call 10: 30M (Tesseract)
- Call 11: 375M (Tesseract, DiRAC@Leicester)

Code

OpenQCD

- FASTSUM extension to openQCD 1.6
- Anisotropic
- Stout smearing
- Intel AVX-512 vectorisation
- Fermion matrix inverter
- Meson and baryon correlators
- Taylor expansion coeffs, including condensates, susceptibilities
- Excellent scaling on standard CPUs: Intel, AMD, BlueGene, Xeon Phi, ARM ThunderX2
- Porting to GPU in progress

Computational needs

Strategies

- 1. Continuum time limit $a_{ au}
 ightarrow 0, a_s$ fixed, $\xi
 ightarrow \infty$
- 2. Continuum limit $a_s, a_\tau \rightarrow 0, \xi$ fixed
- 3. Physical quarks $m_q \rightarrow m_{ud}, m_s$

Short-term plans

- More chiral: Gen2 \rightarrow Gen2L \rightarrow Gen2P
- Increase statistics to per-mille on correlators
- Increase spatial volume $32^3 \rightarrow 48^3$ or 64^3
- Reduce a_{τ} : $\xi = 3.5 \rightarrow 7$

Short-medium term plans

Gen2P: physical quark masses

Gen3: higher anisotropy

Computational needs

Special requirements

- Small steps in $\mathcal{T}
 ightarrow$ "unusual" values for $N_{ au}$
- Large spatial volumes for critical scaling, thermodynamics
- Typically larger statistics than T = 0 studies
 - $\rightarrow\,$ sub-permille errors for transport, thermal width
 - $\rightarrow~$ 100k–1M trajectories for higher order Taylor expansion
- ► Operator traces: O(1000) sources for susceptibilities, Taylor expansion coefficients

Computational needs

Estimated future needs

- Physical quarks
 - ightarrow 1–2 orders of magnitude increase
 - $\rightarrow~\sim$ 2G Tesseract core-hrs, 200TB for full Gen2P ensemble
- Continuum limit
 - $\rightarrow\,$ order of magnitude increase per ensemble
 - $\rightarrow\,$ significant tuning effort
- Algorithm developments
 - \rightarrow multilevel for light fermions \rightarrow viscosity?
 - \rightarrow Efficient management of high order traces?
 - \rightarrow Machine learning ideas for spectral functions?

Outlook

- Quantitative understanding of T_{pc} , EoS at $\mu = 0$ obtained
- Replicate staggered results with Wilson (+DW, overlap?)
- Role of topology, $U(1)_A$ restoration?
- Quantitative results for transport and spectral properties?
- Quantitative EoS, transition line for $\mu > 0$?
- Existence of critical point?

Approaches to sign problem

- Complex Langevin is promising
- Lefschetz thimble / flow deformation?
- Density of states
- Dual formulations?
- Ultimate sign problem: real-time simulations