arm

+ + + +

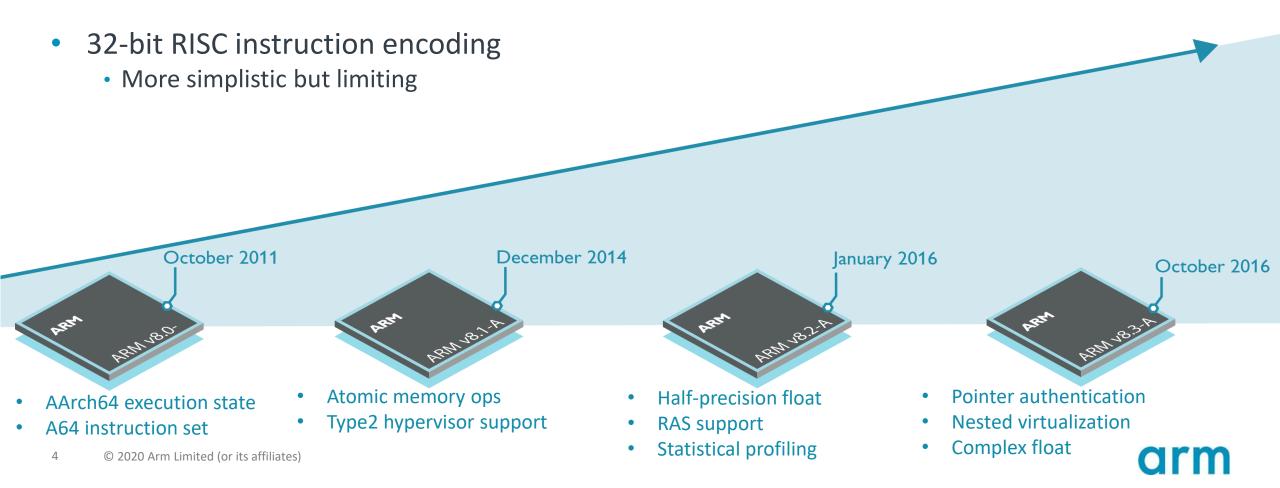
+ + + +

The Arm Architecture for Exascale HPC

EXALAT - Lattice Field Theory at the Exascale

Dr. Olly Perks - Principal HPC Engineer Olly.Perks@arm.com 17th June 2020

CIM Arm and our role in HPC


+ + + + + + + + + + + + + +

* * * * * * * * * * * * * * *

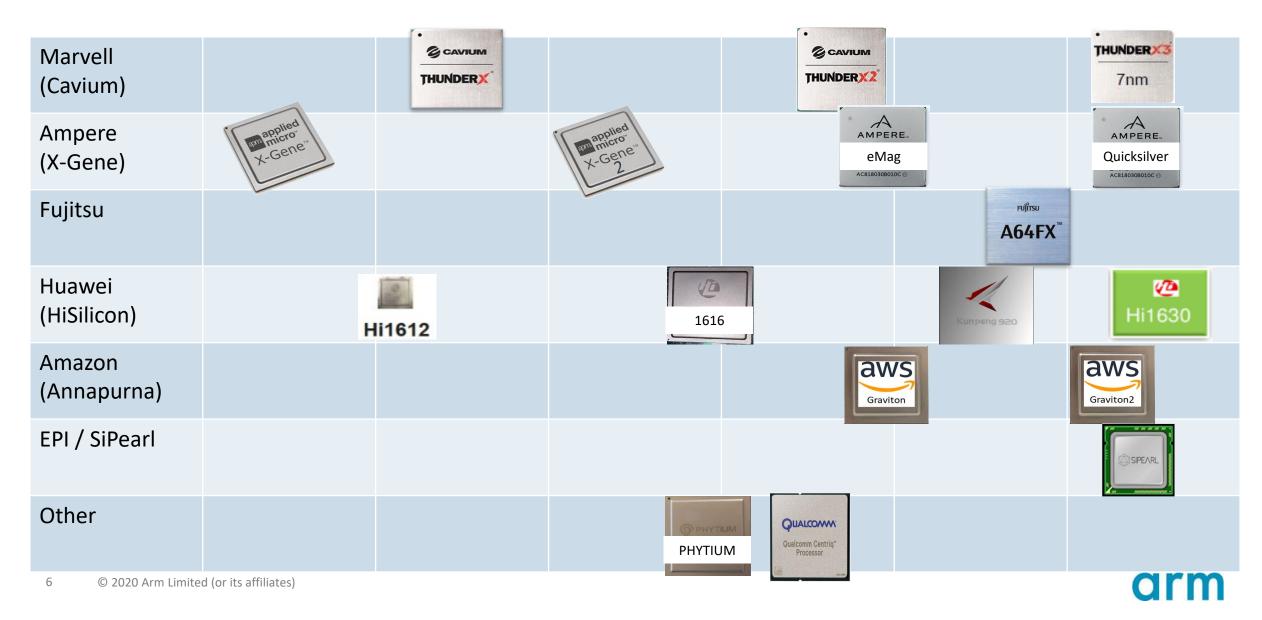
+ + + + + + + + + + + + +

What is Arm?

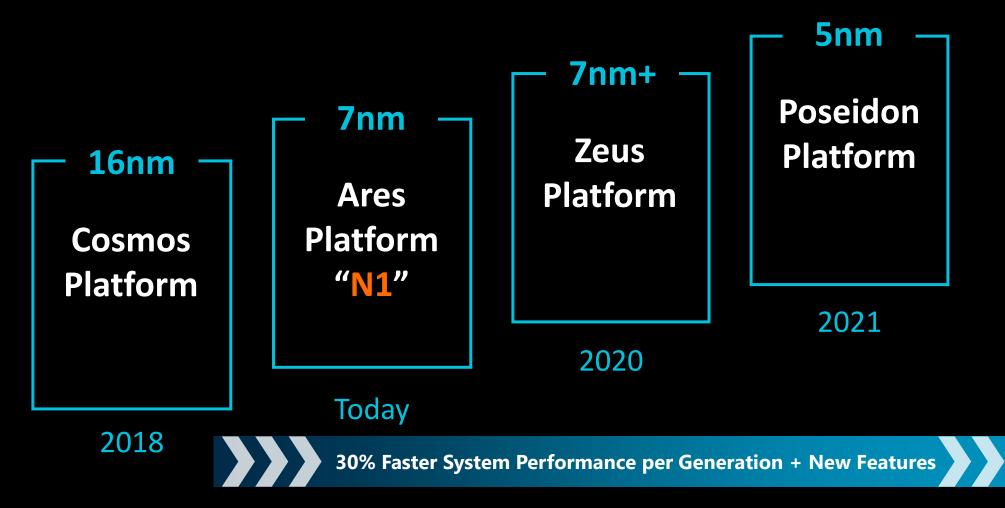
- Arm designs IP (such as the Arm ISA)
 - We do not manufacture hardware

Why Arm?

Especially for Infrastructure / HPC / Scientific Computing / ML?


Hardware

- Flexibility: Allow vendors to differentiate
 Speed and cost of development
- Provide different licensing
 - Core Reference design (A53/A72/N1)
 - Architecture Design your own (TX2, A64FX)
- Other hardware components
 - NoCs, GPUs, memory controllers
 - "Building blocks" design
- Architecture validation for correctness


Software

- All based on the same instruction set
 - Commonality between hardware
 - Reuse of software
- Comprehensive software ecosystem
 - Operating systems, compilers, libraries, tools
 - Not just vendor third party too
- Large community
 - Everything from Android to HPC

Variation in the Processor Market

Each generation brings faster performance and new infrastructure specific features

Not Just Hardware

Applications

Open-source, owned, commercial ISV codes, ...

Containers, Interpreters, etc.

Singularity, PodMan, Docker, Python, ...

Performance

Engineering

Arm Forge (DDT, MAP), Rogue Wave, HPC Toolkit, Scalasca, Vampir, TAU, ... SLURM, IBM LSF, Altair PBS

S

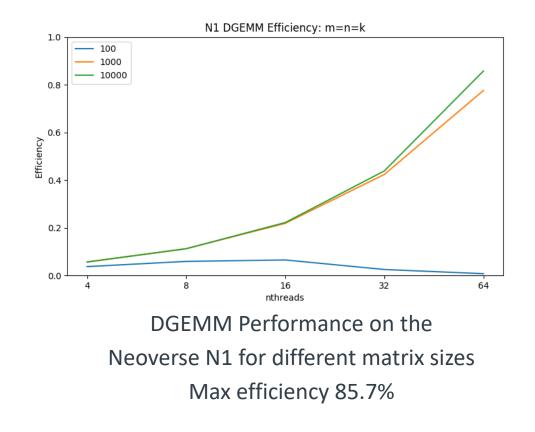
cheduler

Cluster

Management

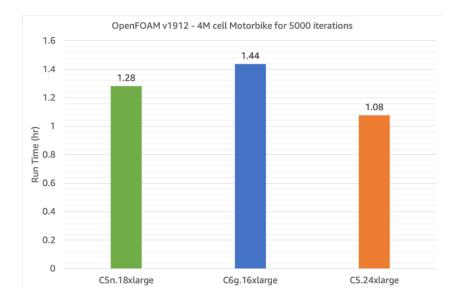
Bright, HPE CMU

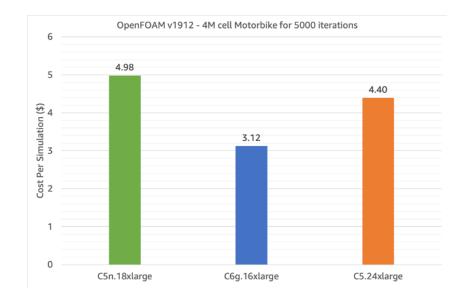
Middleware


Mellanox IB/OFED/HPC-X, OpenMPI, MPICH, MVAPICH2, OpenSHMEM, OpenUCX, HPE MPI

| OEM/ODM's
Cray-HPE, ATOS-Bull,
Fujitsu, Gigabyte, | Compilers
Arm, GNU, LLVM, Clang, Flang,
Cray, PGI/NVIDIA, Fujitsu, | Libraries
ArmPL, FFTW, OpenBLAS,
NumPy, SciPy, Trilinos, PETSc,
Hypre, SuperLU, ScaLAPACK, | Filesystems
BeeGFS, Lustre, ZFS,
HDF5, NetCDF, GPFS, | S Pro, |
|--|---|--|---|--------|
| Silicon | | OS
RHEL, SUSE, CentOS, Ubuntu | J, | |
| Suppliers
Marvell, Fujitsu,
Mellanox, NVIDIA, | A | Arm Server Ready P
Standard firmware and RA | | |

arm


Accelerated Maths Libraries


- Arm produce a set of accelerated maths routines
 - Microarchitecture tuned for each Arm core
 - BLAS, LAPACK, FFT (Standard interface)
 - Tuned math calls
 - Transcendentals (libm) + string functions
 - Sparse operations
 - SpMV / SpMM
 - Available for GCC and Arm compiler
- Open source maths libraries available
 - OpenBLAS, BLIS, SLEEF
- Other vendor maths libraries also available
 Cray (libsci), Fujitsu (SSL2)

Arm HPC in the Cloud - AWS Graviton2

- Perfect example of Arm model
- AWS designed and built their own processor
 - Based on an Arm N1 core license
 - With additional custom IP
 - Optimise for cloud environment (e.g. power, cost)
- Specs:
 - 64-core socket, @2.5 GHz (single socket nodes)
 - 8x DDR4-3200 memory channels
 - 128 GB (C6g), 256 GB (M6g), 512 GB (R6g)
- Case study: OpenFOAM on C6g
 - <u>https://aws.amazon.com/blogs/compute/c6g-openfoam-better-price-performance/</u>
 - Vs Skylake: 12% slower, but 37% lower \$/solution
 - OpenFOAM v1912, GCC 9.2, Open MPI 4.0.3, UCX 1.8

CIM Arm and Exascale

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + +

Arm Based Processors for Exascale systems

- Arm technology can be a great fit for exascale system design
 - Customisation and configuration for energy and performance efficiency
- Exascale really isn't just about the processors (FLOPs are easy, performance is hard)
- Key technology 'necessary' for Exascale
 - Processors + vector units (e.g. AVX-512, SVE)
 - Memory subsystems (e.g. High Bandwidth Memory)
 - High performance networks (e.g. InfiniBand, TOFU, Slingshot)
 - Accelerators, Filesystems, Middleware, Compilers,
- Two key Arm-based case studies
 - Fugaku / A64FX
 - EPI

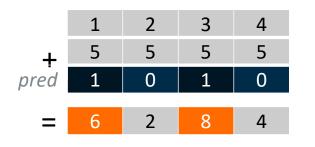
Quick Introduction to

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + +

+ + + + + + + + + + + + + + + +

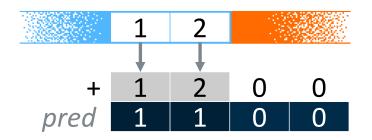

+ + + + + + + + + + + + + + + +

SVE: Scalable Vector Extension

- SVE is Vector Length Agnostic (VLA)
 - Vector Length (VL) is a hardware implementation choice from 128 up to 2048 bits.
 - New programming model allows software to scale dynamically to available vector length.
 - No need to define a new ISA, rewrite or recompile for new vector lengths.
- SVE is not an extension of Advanced SIMD (*aka* Neon)
 - A separate, optional extension with a new set of instruction encodings.
 - Initial focus is HPC and general-purpose server, <u>not</u> media/image processing.
- SVE begins to tackle traditional barriers to auto-vectorization
 - Software-managed speculative vectorization allows uncounted loops to be vectorized.
 - In-vector serialised inner loop permits outer loop vectorization in spite of dependencies.

How can you program when the vector length is unknown?

SVE provides features to enable VLA programming from the assembly level and up



Per-lane predication

Operations work on individual lanes under control of a predicate register.

| for (i | = 0; | i < | n; | ++i) |
|---------|------|-----|----|------|
| INDEX i | n-2 | n-1 | n | n+1 |
| CMPLT n | 1 | 1 | 0 | 0 |

Predicate-driven loop control and management Eliminate scalar loop heads and tails by processing partial vectors.

Vector partitioning & software-managed speculation

First Faulting Load instructions allow memory accesses to cross into invalid pages.

Vectorizing A Scalar Loop With ACLE

a[:] = 2.0 * a[:]

128-bit NEON vectorization

int i;

```
// vector loop
for (i=0; (i<N-3) && (N&~3); i+=4) {
  float32x4_t va = vldlq_f32(&a[i]);
  va = vmulq_n_f32(va, 2.0);
  vstlq_f32(&a[i], va)
}
// drain loop
for (; i < N; ++i)
  a[i] = 2.0 * a[i];</pre>
```

for (int i=0; i < N; ++i) { a[i] = 2.0 * a[i];</pre>

SVE vectorization

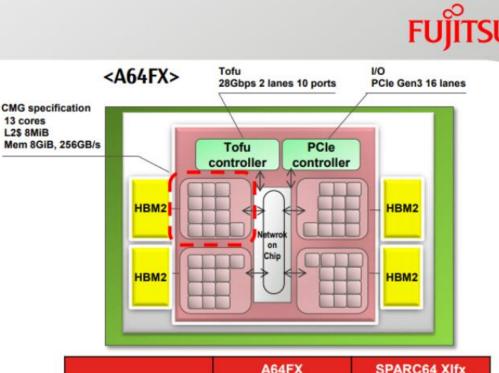
for (int i = 0 ; i < N; i += svcntw())
{
 svbool_t Pg = svwhilelt_b32(i, N);
 svfloat32_t va = svld1(Pg, &a[i]);
 va = svmul_x(Pg, va, 2.0);
 svst1(Pg, &a[i], va);
}</pre>

SVE Compiler Support

| Compiler | Assembly /
Disassembly | Inline
Assembly | ACLE | Auto-
vectorization | Math
Libraries |
|----------------------|---------------------------|--------------------|--------------------------|--------------------------|-------------------|
| Arm Compiler for HPC | SVE + SVE2 | SVE + SVE2 | SVE + SVE2 | SVE+ SVE2 | SVE |
| LLVM/Clang | SVE + SVE2 | SVE + SVE2 | SVE + SVE2 in
LLVM 10 | SVE + SVE2 in
LLVM 11 | |
| GNU | SVE + SVE2 | SVE + SVE2 | SVE + SVE2 in
GNU 10 | SVE now
SVE2 in GNU10 | |

+ + + + + + + + + + + + + + +

CIM Exascale Case Study: Fugaku Supercomputer


...

+ + + + + + + + + + + + + +

© 2020 Arm Limited (or its affiliates)

Fujitsu A64FX

- Arm Architecture license
 - Built to replace the SPARC64 VIIIfx (in K-Computer)
 - Nearly 10 years of collaboration with Arm for SVE
 - RIKEN + Fujitsu + Arm
- Based around 4 CMGs (Core Memory Group)
 - Essentially a NUMA node
 - 12 cores (+1 Operating system core) (48+4 / socket)
 - 2x 512-bit SVE
 - 1.8-2.2 GHz
 - 2.7 3.3 TFLOPS / socket
 - 1 stack of 8 GB HBM2 (~1 TB/s bandwidth / socket)
 - TOFU or InfiniBand
- General purpose CPU with GPU like performance

| | A64FX
(Post-K) | SPARC64 XIfx
(PRIMEHPC FX100) |
|------------------|-------------------|----------------------------------|
| ISA (Base) | Armv8.2-A | SPARC-V9 |
| ISA (Extension) | SVE | HPC-ACE2 |
| Process Node | 7nm | 20nm |
| Peak Performance | >2.7TFLOPS | 1.1TFLOPS |
| SIMD | 512-bit | 256-bit |
| # of Cores | 48+4 | 32+2 |
| Memory | HBM2 | HMC |
| Memory Peak B/W | 1024GB/s | 240GB/s x2 (in/out) |

All Rights Reserved. Copyright © FUJITSU LIMITED 2018

Fugaku Supercomputer

- Biggest Arm based deployment
 - Due to be announced next week at Top500
 - Twitter pre-announcement at 0.537 Exaflops
 - 7.6M Arm cores (no accelerators)
- Energy Consumption
 - Designed to be low
 - ~150 W / node *1

Satoshi Matsuoka @ProfMatsuoka · 15 May

We just announced the Fugaku config at a press briefing. The whole system is 158,976 A64FX nodes, and running at 2.2Ghz peak performances for

64bitFP/32bitFP/16bitFP/8bitINT are 537Peta/1.07Exa/2.15Exa/4.30Exa (FL)ops respectively, as well as the total memory BW 163 PetaByte/s.

Pinned Tweet

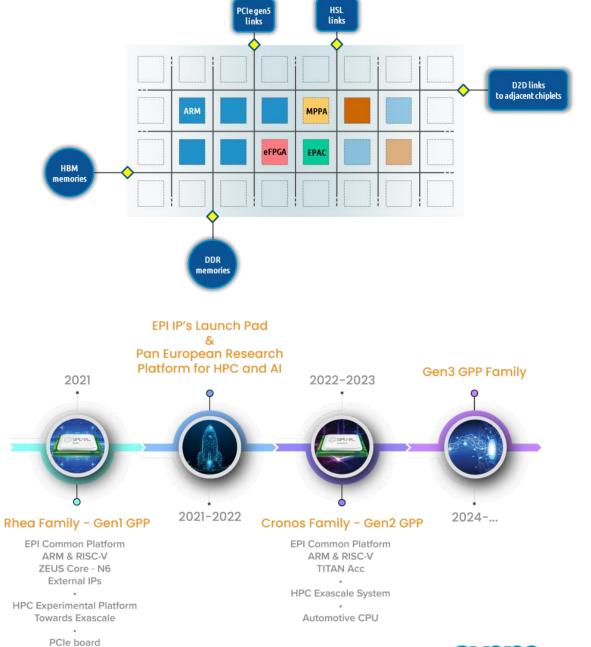
- Delivered early to assist with COVID-19
 - National and international projects
 - Open Science
 - AI/ML/DL

| Ran | TOP500
k Rank | System | Cores | Rmax
(TFlop/s) | | Efficiency
(GFlops/watts) |
|-----|------------------|--|--------|-------------------|-----|------------------------------|
| 1 | 159 | A64FX prototype - Fujitsu A64FX, Fujitsu A64FX 48C 2GHz,
Tofu interconnect D , Fujitsu
Fujitsu Numazu Plant
Japan | 36,864 | 1,999.5 | 118 | 16.876 |

Power

20 © 2020 Arm Limited (or its affiliates)

+ + + + + + + + + + + + + + +


Exascale Case Study: EPI and SiPearl

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

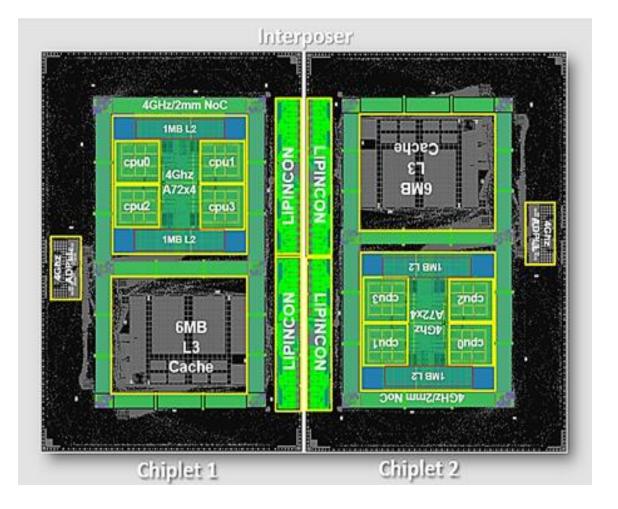
EPI: SiPearl Rhea (1st Gen)

- New initiative as part of EuroHPC
 - Drive for European technology for HPC
- Mixture of new technologies
 - Arm general purpose cores (Zeus N2)
 - Accelerators: RISC-V, FPGA
 - Memory: DDR 4/5, HBM
 - Connectivity: PCle G5, CCIX
- Targeted for key European markets
 - Automotive
 - HPC
 - AI / ML

Automotive PoC

The Next Steps

| . | + | + | . | + | т | . | + | т | + | + | . | ÷ | + | <u> </u> |
|----------|---|---|----------|---|---|----------|---|----------|----------|---|----------|---|---|----------|
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |

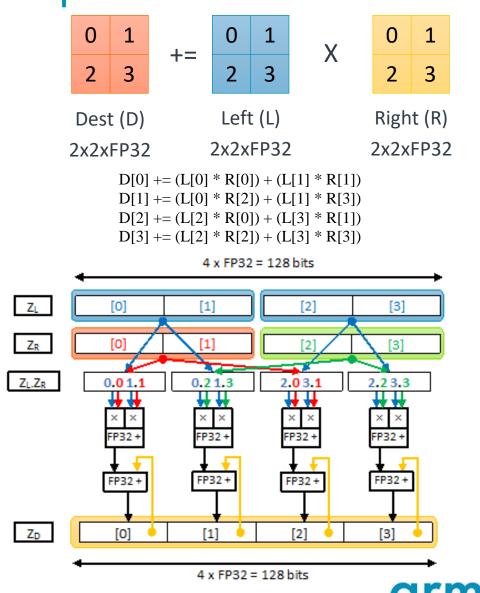

| | | + | | | | | |
|--|--|---|--|--|--|--|--|
| | | | | | | | |

© 2020 Arm Limited (or its affiliates)

Chiplet Demonstration

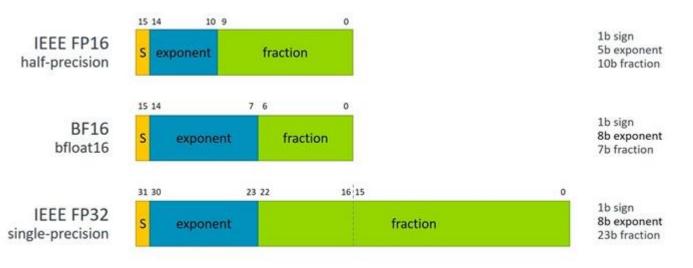
https://www.arm.com/company/news/2019/09/arm-and-tsmc

- Proof-of-concept produced in April 2019
- Dual-chiplet 7nm CoWoS
 - Chip-on-Wafer-on-Substrate
- Each chiplet contains four Arm Cortex[®]-A72 processors
 - on-die interconnect mesh bus.



FMMLA: High Performance Matrix Multiplication

- Added to Armv8.6
 - NEON and SVE instructions
 - FMMLA instructions for FP (SVE)


FMMLA <Zda>.S, <Zn>.S, <Zm>.S FMMLA <Zda>.D, <Zn>.D, <Zm>.D

- 2x2 matrix multiplication
 - Works on multiple of 'vector granules'
 - 2x2xFP32 = 128-bit granules
 - Assumes vector length is multiple
- May require layout transformations
 - Outer loop to minimise cost
- Accelerated libraries

New Data Type Support: BFloat16

- New addition to Armv8-A
 - Adds support for BF16
- Instructions for NEON and SVE
 - Including:
 - BFDOT: Dot Product (1x2)x(2x1)
 - BFMMLA: Mat Multiply (2x4)x(4x2)
- Significant performance gains
 - ML training and inference workloads
- Supported in Arm libraries
 - Arm NN and Arm Compute Libraries

Conclusion

- Exascale is about far more than just the processor technology
- But Arm provides a great foundation on which to design Exascale systems
- Robust hardware and software ecosystem
 - Coupled with world class performance
- Lots more exciting features to come

| + + + | + + + | + + + | + + + | + + |
|-------|-------|-------|-------|-----|
| | | | | |

| | | rn | \mathbf{n}^{\dagger} | | | | | trac | e Arm trademark
demarks or trad
he US and/or els
featured m | lemarks of .
sewhere. A | Arm Limited | or its subsid | diaries) in
ner marks |
|---|---|----|------------------------|---|---|---|---|------|--|----------------------------|-------------|---------------|--------------------------|
| + | + | + | + | + | + | + | + | + | + | + | + | | |

www.arm.com/company/policies/trademarks

| | | | + | | | | | |
|--------------|-----------------|---------------|---|--|--|--|--|--|
| © 2020 Arm I | Limited (or it: | s affiliates) | | | | | | |

Backup: More exciting new things

arm

new unings

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + +

⁺ © 2020 Arm Limited (or its affiliates)

NVIDIA Mellanox BlueField-2 SmartNIC

- Smart NICs are going to play a significant role in new systems
- BlueField-2 Integrates an IB NIC with Arm cores
 - 200 Gb/s InfiniBand
 - 8x Arm A72 cores
 - 8/16 GB DDR4
- NIC operates as an offload node
 - Runs Ubuntu
 - Host MPI ranks, map network storage, burst buffer, ...

Scalable Vector Extensions V2 (SVE2)

SVE for non HPC markets

Built on SVE

Improved scalability

Vectorization of more workloads

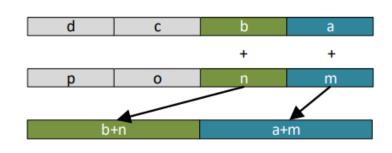
• Built on the SVE foundation.

- Scalable vectors with hardware choice from 128 to 2048 bits.
- Vector-length agnostic programming for "write once, run anywhere".
- Tackles some obstacles to compiler auto-vectorisation.
- Scaling single-thread performance to exploit long vectors.
 - SVE2 adds NEON[™]-style fixed-point DSP/multimedia plus other new features.
 - Performance parity and beyond with classic NEON DSP/media SIMD.
 - Tackles further obstacles to compiler auto-vectorization.
- Enables vectorization of a wider range of applications than SVE.
 - Multiple use cases in Client, Edge, Server and HPC.
 - DSP, Codecs/filters, Computer vision, Photography, Game physics, AR/VR,
 - Networking, Baseband, Database, Cryptography, Genomics, Web serving.
 - Improves competitiveness of Arm-based CPU vs proprietary solutions.
 - Reduces s/w development time and effort.

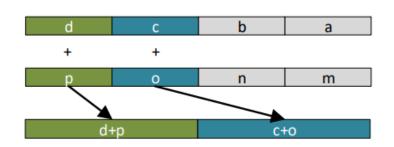
SVE2 Instructions Add:

What's new

- Thorough support for fixed-point DSP arithmetic
 - (traditional Neon DSP/Media processing, complex numbers arithmetic for LTE)
- Multi-precision arithmetic
 - (bignum, crypto)
- Non-temporal gather/scatter
 (HPC, sort)
- Enhanced permute and bitwise permute instructions
 (CV, FIR, FFT, LTE, ML, genomics, cryptanalysis)
- Histogram acceleration support
 (CV, HPC, sort)
- String processing acceleration support
 (parsers)
- (optional) Cryptography support instructions for AES, SM4, SHA standards

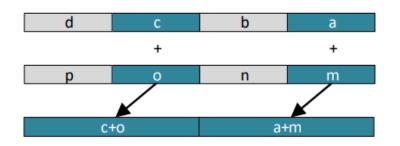

 (encryption)

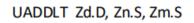
Example: Widening and Narrowing

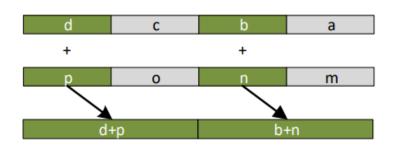

NEON vs SVE2

NEON

UADDL Vd.2D, Vn.2S, Vm.2S


UADDL2 Vd.2D, Vn.4S, Vm.4S




- NEON uses high/low half of vector
- Expensive for large vector lengths
 - >> 128-bit
- SVE2 uses odd/even half of vector
- Bottom and top
- Happens 'in-lane'

SVE2

UADDLB Zd.D, Zn.S, Zm.S

Transactional Memory Extension (TME)

Scalable Thread-Level Parallelism (TLP) for multi-threaded applications

Hardware Transactional Memory

Improved scalability

Simpler software design

- Hardware Transactional Memory (HTM) for the Arm architecture.
 - Improved competitiveness with other architectures that support HTM.
 Strong isolation between threads.
 - Failure atomicity.
- Scaling multi-thread performance to exploit many-core designs.
 - Database.
 - Network dataplane.
 - Dynamic web serving.
- Simplifies software design for massively multi-threaded code.
 - Supports Transactional Lock Elision (TLE) for existing locking code.
 - Low-level concurrent access to shared data is easier to write and debug.