
A Lattice QCD code to use all US Exascale Computers

Peter Boyle,
Brookhaven National Laboratory

Edinburgh University

Exascale programming challenge: platform performance portability

CPU SIMD, OpenMP
CUDA, HiP, SYCL

Grid port
How we ported ?

GridBench - performance scouting
What will be required for performance

Frontier AMD CPU, AMD GPU; HIP

Perlmutter AMD CPU, Nvidia GPU; CUDA

Aurora Intel CPU, Intel GPU; SYCL
Tesseract, Intel Skylake + OPA; OpenMP, SIMD

Tesseract performance per node vs nodes, volume

G
F/

s
pe

r n
od

e

0.0

150.0

300.0

450.0

600.0

Nodes

1 16 32 64 128 256

12^4 16^4 24^4

$50,000 accelerated node with 4TB/s HBM memory, 80TF/s fp32 “typical”
Cray SHASTA - 400 GB/s interconnect (bidirectional)

Grid background:
Grid is a C++11 high level data parallel interface for cartesian Grid problems

Principal target is Lattice Quantum Chromodynamics (LQCD).

Emerged from Intel Parallel Computing Centre funding in 2014, regular iXPUG participant.
Grid started after PB conversation with Andrew Richards (CTO of Codeplay) about Pauli matrices, LLVM and games programming

Amusing connection to significant players in SyCL.

Grid aims to give performance portability between many Exascale architectures

Grid adopted by USQCD ECP project in 2017/8 as a portability plan of record.
PB only non-US investigator on their DOE ECP grant
Interfaced to CPS and MILC codes
Used in UK, Japan, Germany, CERN, USA

Multicore performance and portability has been good for some time

CUDA GPU support has been added recently

Plan to support ALL DOE Exascale systems

Discuss generalisation to HIP and SyCL

Grid single node performance

Architecture Cores GF/s (Ls x Dw) peak
Intel Knight’s Landing 7250 68 770 6100

Intel Knight’s Corner 60 270 2400
Intel Skylakex2 48 1200 9200

Intel Broadwellx2 36 800 2700
Intel Haswellx2 32 640 2400
Intel Ivybridgex2 24 270 920
AMD EPYCx2 64 590 3276

AMD Interlagosx4 32 (16) 80 628
Nvidia Volta 84 SMs 1500 15700

• Dropped to inline assembly for key kernel in KNL and BlueGene/Q

• EPYC is MCM; ran 4 MPI ranks per socket, one rank per die

• Also: ARM Neon and ARM SVE port

Common source accelerator port.

• Assumed Unified Virtual Memory (not restriction to Nvidia as Intel and AMD GPU’s support under OpenCL/Linux)

• CUDA; considering OpenMP 5.0 and SyCL for AMD & Intel accelerator portability

Summit performance per V100 vs gpu count

G
F/

s
pe

r G
PU

0

550

1100

1650

2200

GPU’s (6 = 1 node)

1 6 12 48

12^4 16^4 24^4

Long term resolution:
Peer-2-peer memory over NVlink, MPI over X Bus.

6.5TF/s
7TF/s on 144x24x24x24 !!!

MPI DMA

Fast local proj
& MPI buffer fill

Slower proj over NVlink
Within group of 3 GPUs

05/11/2019, 09)38

Page 1 of 1https://en.wikichip.org/w/images/0/06/summit_single-node.svg

Sy
sM

em

SysM
em

POWER9
CPU

V100
GPU

V100
GPU

V100
GPU

NVL
NVL NVL

NVL

N
V

L

N
V

L

HBM2

HBM2HBM2

NVL
NVL

NVL
NVL

NVL
NVL

Sy
sM

em

SysM
em

POWER9
CPU

V100
GPU

V100
GPU

V100
GPU

NVL
NVL NVL

NVL

N
V

L

N
V

L

HBM2

HBM2HBM2

NVL
NVL

NVL
NVL

X Bus

PCIe Gen 4 I/O

NVL
NVL

NIC
PCIe Gen 4 I/O

16GB/s16GB/s

12.5GB/s12.5GB/s

NVMe
1.6TB

64GB/s

x8x8

Summit node has 2 sockets with 3 GPU’s each
Two disconnected NVlink regions, bridged over P9 “X Bus”

Summit

Observed good performance on 1 GPU (1.4 TF/s)
Observed poor performance on 4,6 GPUs < 2TF/s

Original multicore code:
Implement vComplex, vReal fundamental vector types in inline intrinsics on CPUs (+ additional compiler vectorisation targets).

SSE, AVX, AVX2, AVX512, BGQ, ARM Neon, ARM SVE ports

CUA GPU extension:
Neat programming approach taken to write single kernels that give high performance on both SIMD and SIMT architectures

Grid QCD code

Design considerations
• Performance portable across multi and many core CPU’s

SIMD⌦OpenMP⌦MPI

• Performance portable to GPU’s
SIMT⌦offload⌦MPI

• N-dimensional cartesian arrays

• Multiple grids

• Data parallel C++ layer : Connection Machine inspired

Started in 2014 as Intel IPCC project
GPU portability studies with USQCD
Adopted as POR by USQCD in DOE Exascale Computing Project

Portability 101:
Always abstract vendor specific interfaces & types as internal interface in code

CUDA,
x86 intrinsics
MPI

Reimplement the abstracted interface according to compile target

Performance Portability 201:
Always abstract data layout as vector length, cacheline size etc… may influence

Grid internal interface to acceleration
• OpenMP, CUDA, HIP, SyCL versions

// Function attributes
// accelerator
// accelerator_inline
// Parallel looping
// accelerator_for(iter1, num1, nsimd, ...)
// accelerator_for2d(iter1, num1, iter2, num2, nsimd, ...)
// accelerator_forNB, accelerator_for2dNB
// uint32_t accelerator_barrier(); // device synchronise
//
// Parallelism control: Number of threads in thread block is acceleratorThreads*Nsimd
// acceleratorInit();
// uint32_t acceleratorThreads(void);
// void acceleratorThreads(uint32_t);
// void acceleratorSynchronise(void); // synch warp etc..
//
// int acceleratorSIMTlane(int Nsimd); // my location
// coalescedRead/coalescedReadPermute/coalescedWrite // Memory representation to stack representation
//
// Reduction
// template<class t> accelerator_sum(t *tp,uint64_t num)
//
// Memory management:
// void *acceleratorAllocShared(size_t bytes);
// void *acceleratorAllocDevice(size_t bytes);
// void acceleratorFreeShared(void *ptr);
// void acceleratorFreeDevice(void *ptr);
// void *acceleratorCopyToDevice(void *from,void *to,size_t bytes);
// void *acceleratorCopyFromDevice(void *from,void *to,size_t bytes);

Capturing SIMD and SIMT in a single code

Capturing SIMT and SIMD under a single Kernel

The struct-of-array (SoA) portability problem:

• Scalar code: CPU needs struct memory accesses struct calculation

• SIMD vectorisation: CPU needs SoA memory accesses and SoA calculation

• SIMT coalesced reading: GPU needs SoA memory accesses struct calculation

• GPU data structures in memory and data structures in thread local calculations di↵er

Model Memory Thread
Scalar Complex Spinor[4][3] Complex Spinor[4][3]
SIMD Complex Spinor[4][3][N] Complex Spinor[4][3][N]
SIMT Complex Spinor[4][3][N] Complex Spinor[4][3]
Hybrid? Complex Spinor[4][3][Nm][Nt] Complex Spinor[4][3][Nt]

How to program portably?

• Use operator() to transform memory layout to per-thread layout.

• Two ways to access for read

• operator[] returns whole vector
• operator() returns SIMD lane threadIdx.y in GPU code
• operator() is a trivial identity map in CPU code

• Use coalescedWrite to insert thread data in lane threadIdx.y of memory layout.

SIMT and SIMD portability: per thread “stack” computational types differ

Consistent emerging solution : advanced C++

Granularity exposed through ISA/Performance
) data structures must change with each architecture

OpenMP, OpenAcc do not address data layout

Several packages arriving at similar conclusions:
• Kokkos (Sandia)

• RAJA (Livermore)

• Grid (Edinburgh + DOE ECP)

Use advanced C++11 features, inline header template library, auto, decltype etc..
• Discipline and coding standards are required. C++ can be ine�cient otherwise

• Hide data layout in opaque container class

• Device lambda capture key enabling feature (CUDA, SyCL), or OpenMP 5.0

accelerator_for(iterator, range, {
body;

});

Grid buys into advanced C++ to abstract architecture
dependence - aligns with SYCL

Single coding style for the above

WAS

LatticeFermionView a,b,c;
accelerator_for(ss,volume, {

a[ss] = b[ss] + c[ss] ;
});

NOW

LatticeFermionView a,b,c;
accelerator_for(ss,volume,Spinor::Nsimd(), {

coalescedWrite(a[ss], b(ss) + c(ss));
});

On GPU accelerator for sets up a volume ⇥ Nsimd thread grid.

• Each thread is responsible for one SIMD lane

On CPU accelerator for sets up a volume OpenMP loop.

• Each thread is responsible for Nsimd() SIMD lanes

Per-thread datatypes inside these loops cannot be hardwired.

C++ auto and decltype use the return type of operator () to work out computation variables in architecture dependent way.

Unify CPU SIMD and GPU SIMT style of coding with C++ type abstraction

Single source high performance kernels are optimal on BOTH CPU and CUDA

Porting Grid Cuda code to SYCL

Intel memory model extensions to SyCL made this easier
First pass port was several months (G. Filaci, paid by Intel in Edinburgh)
After waiting for these, due to internal abstraction, porting was a few days

Buffer semantics are too far from other environments for a pleasant, maintainable
and portable unified code. Intel’s updates to spec v. important.

Prefer to store and access pointers

// CUDA specific
accelerator_inline int acceleratorSIMTlane(int Nsimd) {
 return threadIdx.z;
}
#define accelerator_for2dNB(iter1, num1, iter2, num2, nsimd, ...)\
 { \
 typedef uint64_t Iterator; \
 auto lambda = [=] accelerator \
 (Iterator iter1,Iterator iter2,Iterator lane) mutable { \
 __VA_ARGS__; \
 }; \
 int nt=acceleratorThreads(); \
 dim3 cu_threads(acceleratorThreads(),1,nsimd); \
 dim3 cu_blocks ((num1+nt-1)/nt,num2,1); \
 LambdaApply<<<cu_blocks,cu_threads>>>(num1,num2,nsimd,lambda); \
 }

// SYCL specific
accelerator_inline int acceleratorSIMTlane(int Nsimd) {
return __spirv::initLocalInvocationId<3, cl::sycl::id<3>>()[2];
}

#define accelerator_for2dNB(iter1, num1, iter2, num2, nsimd, ...) \
 theGridAccelerator->submit([&](cl::sycl::handler &cgh) { \
 unsigned long nt=acceleratorThreads(); \
 unsigned long unum1 = num1; \
 unsigned long unum2 = num2; \
 cl::sycl::range<3> local {nt,1,nsimd}; \
 cl::sycl::range<3> global{unum1,unum2,nsimd}; \
 cgh.parallel_for<class dslash>(\
 cl::sycl::nd_range<3>(global,local), \
 [=] (cl::sycl::nd_item<3> item) mutable { \
 auto iter1 = item.get_global_id(0); \
 auto iter2 = item.get_global_id(1); \
 auto lane = item.get_global_id(2); \
 { __VA_ARGS__ }; \
 }); \
 });

// HIP specific
accelerator_inline int acceleratorSIMTlane(int Nsimd) {
 return hipThreadIdx_z;
}
#define accelerator_for2dNB(iter1, num1, iter2, num2, nsimd, ...) \
 { \
 typedef uint64_t Iterator; \
 auto lambda = [=] accelerator \
 (Iterator iter1,Iterator iter2,Iterator lane) mutable { \
 { __VA_ARGS__;} \
 }; \
 int nt=acceleratorThreads(); \
 dim3 hip_threads(nt,1,nsimd); \
 dim3 hip_blocks ((num1+nt-1)/nt,num2,1); \
 hipLaunchKernelGGL(LambdaApply,hip_blocks,hip_threads, \
 0,0, \
 num1,num2,nsimd,lambda); \
 }

At same time did HIP interface for AMD GPU
Semantically similar to CUDA

https://www.olcf.ornl.gov/wp-content/uploads/2019/10/CAAR_HIP_on_Frontier.pdf

Memory in Device Code
� Threads by default can dereference pinned host memory in device code:

⁃ Memory allocated by hipHostMalloc() (more details later)
⁃ Data travels over host<->device data fabric (e.g. PCIe®)
⁃ Access will likely be slow compared to other memory types.

� Threads can all access pointers to Unified Virtual Memory:
⁃ Memory allocated by hipMallocManaged()
⁃ Memory is automatically migrated between host and device by the HIP runtime
⁃ Can have significant overhead, even when memory is already resident on device
⁃ Sometimes useful to use UVM in porting process
⁃ Highly recommended to migrate away from UVM usage for performance sensitive regions.

� Threads can all access device global memory via device pointers:
⁃ Memory allocated by hipMalloc()
⁃ Access is slow compared to more local memory (registers and LDS)
⁃ Bandwidth can be significantly improved if the wavefront accesses memory in coalesced fashion (more later)

| Frontier Application Readiness Kick-Off Workshop | Oct 201919

Grid initially used UVM; found performance
issues on Summit
Optionally now have software cache on device

My own cross platform version of Sycl Buffer
Would have been useful for KNL
Non-uniform memory distinct from GPU
architecture, debug on laptop!
Balance of probability: at least one vendor
will suck at UVM!

Home Grown Caching interface

Introduce MemoryManager class.

Access is made through View objects with RW intent & location, open/close semantic.

Automatic for data parallel expression template engine

A=B*C+Cshift(D,1,Xdir); This is a data parallel interface across all nodes, array elements

dpcpp is not data parallel in same F90 sense.

Under the hood, communication is performed
Data is possibly moved to/from device
Works on KNL, HIP, CUDA and SYCL. Buffer works only on SYCL.

MemoryManager tracks entire buffers in a software cache with O(1) overhead

O(1) Hash table maps Host pointers to cache table entries
Consistent, CpuDirty, AccDirty states
(I prev. designed the IBM BlueGene/Q multicore L1p prefetching cache… :))

Linked list LRU queue prioritises evictable arrays
O(1) push, pop and erase via indirection from Hash table

EvictNext or EvictLast prio for user avoidance of cache thrashing. Full control of algorithm

SYCL porting details

Grid portability update

Current status
System Technology accelerator works fast

Perlmutter Cray/AMD Milan/Nvidia A100(?) cuda yes yes
Frontier Cray/AMD Epyc/Radeon hip yes maybe
Aurora Cray/Intel SR/Intel Xe sycl yes no

x86 SIMD AMD openmp yes yes
x86 SIMD Intel openmp yes yes

Fujitsu Fugaku ARM SVE openmp yes no

Grid portability update

The Grand Plan (1 year timeframe?)
System Technology accelerator simd future simd ?

Perlmutter Cray/AMD Milan/Nvidia A100(?) cuda GPU RRRRIIII ?
Frontier Cray/AMD Epyc/Radeon hip GPU RRRRIIII ?
Aurora Cray/Intel SR/Intel Xe sycl GEN RRRRIIII ?
Fugaku Fujitsu/ARM SVE openmp GEN RRRRIIII

x86 SIMD AMD Rome/Milan openmp AVX2 RRRRIIII ?
x86 SIMD Intel SapphireRapids openmp AVX512 RRRRIIII ?

SYCL GridBench performance update

• Introduced RRRR RRRR IIII IIII compiler vectorised layout

typedef float vfloat __attribute__ ((vector_size (8*sizeof(float))));
template<class datum> struct datum2 {

datum x;
datum y;

};
template<class pair> struct Complex {

pair z;
}
typedef datum2<vfloat> vfloat2;

typedef GpuComplex<float2 > GpuComplexF;

• Aim for ⇤,⇤,⇤,⇤ and +,+,+,+ and �,�,�,� arithmetic signatures and compiler
vectorisation. builtin permute ??

• NB doubles register footprint on AVX512

• dpcpp/sycl : get 160 GF/s single precision on 6 skylake cores for L3 resident. Just as good
as direct AVX2.

• Get 55-85 GF/s single precision on Gen9 (24, 48 EUs).

• coalescedReadPermute is serialising scalar loads, subgroup SYCL extensions may help

• https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/SubGroup/

Issue #1750
Multi-GPU memory sharing interface is not defined. Needed for NVlink
equivalent intra-node comms.
Buffer model is weak - consistency between CPU and target device
Absence of pointers in original model means bouncing through CPU
required
No way to refer to data on two GPUs for intra node transfer!

Long term resolution:
Peer-2-peer memory over NVlink, MPI over X Bus.

6.5TF/s
7TF/s on 144x24x24x24 !!!

MPI DMA

Fast local proj
& MPI buffer fill

Slower proj over NVlink
Within group of 3 GPUs

Performance scouting with GridBench
Scout performance optimisation with a heavily cut down code

GridBench

Identified 32bit load per “work item” or “thread” on Gen9

Code wants 128bit (complex<double>) vectors with 128bit per work item

Nvidia provides 128bit loads with dynamic (hardware detect) coalescing

LD.E.128 R4, [R10]

T0 T1 T2 T3
R4 0 4 8 12
R5 1 5 9 13
R6 2 6 10 14
R7 3 7 11 15

T0 T1 T2 T3
R4 4 0 12 8
R5 5 1 13 9
R6 6 2 14 10
R7 7 3 15 11

Coalesced load = single L1 access
01 = real part

23 = imaginary part

Coalesced load = single L1 access
even if permutation of line

https://devblogs.nvidia.com/cuda-pro-tip-increase-performance-with-vectorized-memory-access/

Summary:

Grid runs successfully on HIP, SyCL, CUDA

Nvidia
acceleration runs well in production on Summit

AMD
HIP on Nvidia runs well on Summit
Waiting for AMD GPU access

Intel
Functional port to SYCL successful and relatively easy
Some requests for additions to standard
Intel’s memory model changes to SYCL were a BIG help
pointer additions required for multi-GPU and MPI from device anyway

Benefitted from already abstracted code to cover
Accelerator vs Threading
SIMT and SIMD

Massive computing resources in future
Requires investment to exploit successfully
Grid is about as ready as it could be given hardware not available yet

