Carl and the second second

João Guimarães da Costa 中国科学院高能物理研究所

CEPC Status and Prospects

Institute of High Energy Physics Chinese Academy of Sciences

UK Tracker meeting June 1, 2020

IHEP-CEPC-DR-2018-01

IHEP-AC-2018-01

CEPC Conceptual Design Report

Volume I - Accelerator

The CEPC Study Group August 2018

Editorial Team: 43 people / 22 institutions / 5 countries

IHEP-CEPC-DR-2018-02

IHEP-EP-2018-01

IHEP-TH-2018-01

CEPC Conceptual Design Report

Volume II - Physics & Detector

1143 authors 222 institutes (140 foreign) 24 countries

> The CEPC Study Group October 2018

The Circular Electron Positron Collider Physics Program

The CEPC Program

120	160	200	240

Center of Mass Energy [GeV]

2 IPs planned

The CEPC Program

Center of Mass Energy [GeV]

2 IPs planned

Center of Mass Energy [GeV]

2 IPs planned

The CEPC Program

Updated Parameters of Collider Ring since CDR

	Hiq	ggs	Z (2T)			
	CDR	Updated	CDR	Updated		
Beam energy (GeV)	120	-	45.5			
Synchrotron radiation loss/turn (GeV)	1.73	1.68	0.036	-		
Piwinski angle	2.58	3.78	23.8	33		
Number of particles/bunch N _e (10 ¹⁰)	15.0	17	8.0	15		
Bunch number (bunch spacing)	242 (0.68µs)	218 (0.68µs)	12000	15000		
Beam current (mA)	17.4	17.8	461.0	1081.4		
Synchrotron radiation power /beam (MW)	30		16.5	38.6		
Cell number/cavity	2		2	1		
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.33/0.001	0.2/0.001	-		
Emittance ε _x /ε _y (nm)	1.21/0.0031	0.89/0.0018	0.18/0.0016			
Beam size at IP σ_x / σ_y (µm)	20.9/0.068	17.1/0.042	6.0/0.04	-		
Bunch length σ _z (mm)	3.26	3.93	8.5	11.8		
Lifetime (hour)	0.67	0.22	2.1	1.8		
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	5.2	32.1	101.6		
Luminosity increase f	actor: × '	1.8	>	× 3.2		

Updated Parameters of Collider Ring since CDR

	Hig	ggs	Z (2T)			
	CDR	Updated	CDR	Updated		
Beam energy (GeV)	120	-	45.5	-		
Synchrotron radiation loss/turn (GeV)	1.73	1.68	0.036	-		
Piwinski angle	2.58	3.78	23.8	33		
Number of particles/bunch N _e (10 ¹⁰)	15.0	17	8.0	15		
Bunch number (bunch spacing)	242 (0.68µs)	218 (0.68µs)	12000	15000		
Beam current (mA)	17.4	17.8	461.0	1081.4		
Synchrotron radiation power /beam (MW)	30	-	16.5	38.6		
Cell number/cavity	2		2	1		
β function at IP β_x^* / β_y^* (m)	0.36/0.0015			increas		
Emittance $\varepsilon_x/\varepsilon_y$ (nm)	1.21/0.0031	0.89/0.0018	0.18/0.0016			
Beam size at IP σ _x /σ _y (μm)	a ove n	ot yet be	en obsor	bed int		
Bunch length σ _z (mm)	3.26		oto ^{8.5} tor c			
Lifetime (hour)						
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	5.2	32.1	101.6		

× 1.8

Luminosity increase factor:

× 3.2

The Physics Goals — Shopping List

Precision tests of Standard Model (Higgs, W and Z)

Higgs boson and electroweak symmetry breaking

•

Potential to find new physics

Exotic Higgs boson decays Exotics Z boson decays Dark matter and hidden sectors **Extended Higgs sector**

Precision a_s determination • Jet rates at CEPC QCD dynamics, soft QCD effects **QCD** event shapes and light-quark Yukawa couplings

Rare B decays Tau lepton decays Flavor violating Z decays

Institutional Board YN GAO J. GAO

Project Director XC LOU Q. QIN N. XU

Accelerator J. GAO (IHEP) CY Long (IHEP) SN FU (IHEP)

Detector

J. Costa (IHEP)

S. JIN (NJU)

J. Wang(IHEP)

Meets yearly

International Advisory Committee

Young-Kee Kim, U. Chicago (Chair) Barry Barish, Caltech Hesheng Chen, IHEP Michael Davier, LAL Brian Foster, Oxford Rohini Godbole, CHEP, Indian Institute of Science David Gross, UC Santa Barbara George Hou, Taiwan U. Peter Jenni, CERN Eugene Levichev, BINP Lucie Linssen, CERN Joe Lykken, Fermilab Luciano Maiani, Sapienza University of Rome Michelangelo Mangano, CERN Hitoshi Murayama, UC Berkeley/IPMU Katsunobu Oide, KEK Robert Palmer, BNL John Seeman, SLAC Ian Shipsey, Oxford Steinar Stapnes, CERN Geoffrey Taylor, U. Melbourne Henry Tye, IAS, HKUST Yifang Wang, IHEP Harry Weerts, ANL

International Expert Review Committees

Recommended by the International Advisory Committee in 2018

Accelerator Review Committee

Advises on all matters related to accelerator design and R&D including the Machine-Detector interface and upgrade capabilities

Detector R&D Review Committee

Reviews and endorses the Detector R&D proposals from the international community, such that international participants can apply for funds from their funding agencies and make effective and sustained contributions

First meetings happened in November 2019

The Circular Electron Positron Collider Accelerator and Detectors

CEPC Accelerator Chain and Systems

10 GeV

Injector

Booster 100 km

Collider Ring 100 km

e-

e+

45/80/120 GeV beams

Energy ramp **10 GeV**

45/80/120 GeV

Three machines in one single tunnel

- Booster and CEPC - SPPC

$\sqrt{s} = 90, 160 \text{ or } 240 \text{ GeV}$ **2** interaction points

The key systems of CEPC:

- 1) Linac Injector
- 2) Booster
- 3) Collider ring
- 4) Machine Detector Interface
- 5) Civil Engineering

CDR provides details of all systems

The CEPC Baseline: LINAC Injector

LINAC: 1.2 km

The CEPC Baseline: LINAC Injector

Positron target

45 GeV Plasma Wakefield Accelerator considered as an alternative

To be tested in Shanghai's Soft XFEL Facility and SLAC FACET-II

LINAC: 1.2 km

e+/e- beam energy: **10 GeV**

Total beam transfer efficiency: 90%

The CEPC Baseline Collider Design

Double ring Common RF cavities for Higgs

Two RF sections in total

Two RF stations per RF section

 $10 \times 2 = 20$ cryomodules

Six 2-cell cavities per cryomodule

CEPC TDR Technology Demonstration Platforms

1) CEPC injector technology demonstration platform (including damping ring) 2) CEPC booster and collider ring magnets technology demonstration platform 3) CEPC booster and collider ring vacuum system technology demonstration platform

4) CEPC booster and collider ring SCRF accelerator technology demonstration platform

5) CEPC MDI technology demonstration platform (including SC magnets, installation, alignment)

6) CEPC tunnel components alignment and installation technology demonstration platform (40m long Mockup)

7) CEPC plasma accelerator injector technology demonstration platform (alternative to conventional injector)

J. Gao

CEPC 650 MHz Cavity

Collaboration with Photon Source projects in Shanghai and Beijing (1.3 GHz cavities)

IHEP SHINE 1.3 GHz 9-cell cavities (BCP) reached design goal

CEPC 650 MHz Cavity

Collaboration with Photon Source projects in Shanghai and Beijing (1.3 GHz cavities)

- Real and a second a second a second a second

CEPC 650 MHz Cryomodule(2 x 2-cell Model)

1st CEPC 650MHz Klystron Prototype Manufacture

2019/11: Bake-out

High Efficiency Klystron

"High efficiency klystron collaboration consortium", including IHEP, Institute of Electronic) of CAS, and Kunshan Guoli Science and Tech.

3 high-efficiency klystron (up to 80%) prototypes to be built by 2021

2019/12: Delivered to IHEP

2020/1-3: High-power test at IHEP

CEPC 650 MHz Cavity

Collaboration with Photon Source projects in Shanghai and Beijing (1.3 GHz cavities)

High Efficiency Klystron

"High efficiency klystron collaboration consortium", including IHEP, Institute of Electronic) of CAS, and Kunshan Guoli Science and Tech.

> 3 high-efficiency klystron (up to 80%) prototypes to be built by 2021

CEPC 650 MHz Cavity

Collaboration with Photon Source projects in Shanghai and Beijing (1.3 GHz cavities)

Booster low-field dipole magnets

$L_{mag} = 5 \text{ m}, B_{min} = 30 \text{ Gs}, Errors < 5 \times 10^{-4}$

High Efficiency Klystron

"High efficiency klystron collaboration consortium", including IHEP, Institute of Electronic) of CAS, and Kunshan Guoli Science and Tech.

3 high-efficiency klystron (up to 80%) prototypes to be built by 2021

1m long prototype

- 1) Qinhuangdao, Hebei Province
- 2) Huangling, Shanxi Province
- 3) Shenshan, Guangdong Province
- 4) Huzhou, Zhejiang Province
- 5) Chuangchun, Jilin Province
- 6) Changsha, Hunan Province

Civil engineering

Civil engineering design very advanced

Accelerator Region Caverns:

- 1. Surface Buildings of Linac Segment
- 2. Linac Segment
- 3. Transfer Line
- 4. Tunnel Complex of RF Region
- 5. Detector Region Caverns
- 6. Main Ring Tunnel
- 7. Auxiliary Tunnel
- 8. Access Tunnel
- 9. Surface Buildings of Experiment Hall
- 10. Surface Buildings of RF Region
- 11. Surface Buildings of Shaft for Access and Cable
- 12. Shaft for Access and Cable

Detector Region Caverns:

- A. Experiment Hall
- **B. Service Cavern**
- C. Transport Shaft
- D. Shaft for Access, Cable and HVAC
- E. Booster Bypass Tunnel
- F. Main Ring Tunnel
- G. Traffic Tunnel
- H. Auxiliary Tunnel of RF Region

Core area

Meeting room

Communication

nce City Concept Working Space

215

1000

Exibition hall

CEPC: These are NOT detector collaborations

Particle Flow Approach

High magnetic field concept (3 Tesla)

Full silicon tracker concept

Final two detectors WILL be a mix and match of different options

CEPC plans for 2 interaction points

Low magnetic field concept (2 Tesla)

IDEA Concept also proposed for FCC-ee

Machine-detector interface (MDI) in CEPC

Final focusing quadrupoles (QD0) need to be very close to IP

Detector acceptance: > ± 150 mrad

Solenoid magnetic field limited: **2-3 Tesla**

due to beam emittance blow up

Workshop last week: <u>https://indico.ihep.ac.cn/event/11801/</u>

Rates at the inner layer

Hit density: ~2.5 hits/cm²/BX 2.5 MRad/year TID: 10¹² 1MeV n_{eq}/cm² NIEL: (Safety factors of 10 applied)

Cooling of beampipe needed \rightarrow increases material budget near the interaction point (IP)

Detector R&D Major R&D Breakdown

1. Vertex

- **1.1. Pixel Vertex Prototype**
- 1.2. ARCADIA/LFoundry CMOS

2. Tracker

- 2.1. TPC
- 2.2. Silicon Tracker
- 2.3. Drift Chamber
- 3. Calorimeter
- **3.1.ECAL** Calorimeter
- 3.1.1. Crystal Calorimeter
- 3.1.2. Scintillator-Tungsten
- **3.2. HCAL PFA Calorimeter**
- 3.2.1. DHCAL
- 3.2.2. Sci AHCAL
- **3.3. DR Calorimeter**

17 documents

4. Muon Detectors

- 4.1. Muon Scintillator Detector
- 4.2. Muon and pre-shower MuRWell Detectors

5. Solenoid

- 5.1. LTS Solenoid
- 5.2. HTS Solenoid

6. MDI

- 6.1. LumiCal Prototype
- 6.2. Mechanics

7. TDAQ

8. Software and Computing

Projects overview Total subtasks: 95

PBS	Task Name	Page	Subtasks	Context	Team	Document Responsible
	CEPC Detector R&D Project					
1	Vertex					
1.1	Vertex Prototype	5	9	CEPC	China+ international collaborators	Zhijun, Ouyang
1.2	ARCADIA CMOS MAPS	6	6	Generic	INFN, Italy	Manuel Rolo
2	Tracker					
2.1	TPC Module and Prototype	6	12	CEPC	IHEP, Tsinghua	Huirong
2.2	Silicon Tracker Prototype	6	8	Generic	China, UK, Italy	Harald Fox, Meng Wang
2.3	Drift Chamber Activities	4	3	FCC-ee/CEPC	INFN, Novosibirsk	Franco Grancagnolo
3	Calorimetry					
3.1	ECAL Calorimeter					
3.1.1	Crystal Calorimeter	5	6	CEPC	IHEP, Princeton + others	Yong Liu
3.1.2	PFA Sci-ECAL Prototype	3	3	CEPC	USTC, IHEP	Jianbei Liu
3.2	HCAL Calorimeter					
3.2.1	PFA Digital Hadronic Calorimeter	4	5	CEPC	SJTU, IPNL, Weizmann, IIT, USTC	Haijun Yang, Imad Laktineh, Shikma Bressler
3.2.2	PFA Sci-AHCAL Prototype	4	4	CEPC	USTC, IHEP, SJTU	Jianbei Liu
3.3	Dual-readout Calorimeter	5	5	FCC-ee/CEPC	INFN, Sussex, Zagreb, South Korea	Roberto Ferrari
4	Muon Detector					
4.1	Scintillator-based Muon Detector	4	5	CEPC	Fudan, SJTU	Xiaolong Wang, Liang Li
4.2	Muon and pre-shower µRWELL-	5	4	FCC-ee/CEPC	INFN, LNF	Paolo Giacomelli
5	Solenoid					
5.1	LTS solenoid magnet	4	4	CEPC	IHEP+Industry	Zhu Zian
5.2	HTS solenoid magnet	4	4	CEPC	IHEP+Industry	Zhu Zian
6	MDI					
6.1	LumiCal Prototype	4	2	ILC/CEPC	AC, IHEP	Suen Hou
6.2	Interaction Region Mechanics	3	4	CEPC	IHEP	Hongbo Zhu
8	Software and Computing	7	11	CEPC	IHEP, SDU	Li Weidong, Ruan Manqi, Sun Shengseng, Li Gang

17 documents, total: 80 pages

Projects overview: Schedule

PBS	Task Name	Finish	202	0	2021	L	202	22	2023	3	2	024		2025		2026	5	2027		2028	3	202
			H1	H2	H1	H2	H1	. H2	H1	H2	2 H	-11	H2	H1	H2	H1	H2	H1	H2	H1	H2	H1
	CEPC Detector R&D Project	26/12/31	-															I CEP	C Det	tector	R&D	Pro
1	Vertex	23/12/29										Verte	ex									
1.1	Vertex Prototype	23/12/29									\	/erte	ex Pro	ototy	pe							
1.2	ARCADIA CMOS MAPS	23/12/29									A	ARCA	DIA	СМО	S MA	PS						
2	Tracker	24/12/3 1	F											Trac	ker							
2.1	TPC Module and Prototype	23/12/29									T	PC N	Nodu	ule an	d Pro	totyp	be					
2.2	Silicon Tracker Prototype	23/10/31									Sili	icon	Trac	ker P	rotot	уре						
2.3	Drift Chamber Activities	24/12/31												Drift	: Chai	mber	Activ	ities				
3	Calorimetry	24/12/31	-											Calc	orime	try						
3.1	ECAL Calorimeter	2 4/12/3 1	-											ECA	L Cal	orime	eter					
3.1.1	Crystal Calorimeter	21/12/31					Cry	ystal C	alorin	nete	r											
3.1.2	PFA Sci-ECAL Prototype	24/12/31												PFA	Sci-E	CAL P	rotot	уре				
3.2	HCAL Calorimeter	22/12/30	-						HC/	AL C	alor	imet	er									
3.2.1	PFA Digital Hadronic Calorimeter	21/12/31					PF.	A Digit	al Ha	dror	nic C	alori	imet	er								
3.2.2	PFA Sci-AHCAL Prototype	22/12/30							PFA	A Sci	-AH(CAL P	Proto	otype								
3.3	Dual-readout Calorimeter	24 /12/3 1												Dua	l-read	lout (Calori	meter	•			
4	Muon Detector	24/12/31	-											Mu	on De	tecto	or					
4.1	Scintillator-based Muon Detector Prototype	23/12/29									S	Scinti	illato	or-bas	ed M	uon l	Detec	tor Pr	ototy	pe		
4.2	Muon and pre-shower µRWELL-based detecto	rs24/12/31												Muc	on an	d pre	-show	/er μR	WELI	-base	ed de	tect
5	Solenoid	26/12/3 1	-															ı Sole	enoid			
5.1	LTS solenoid magnet	25/12/31														LTS	solen	oid m	agne	t		
5.2	HTS solenoid magnet	26/12/31																HTS	soler	n <mark>oid n</mark>	nagn	et
6	MDI	22/12/30	-						I MC	DI												
6.1	LumiCal Prototype	20/12/31			Lum	iCal	Proto	otype														
6.2	Interaction Region Mechanics	22/12/30							Inte	eract	tion	Regi	on N	/lecha	nics							
8	Software and Computing	20/12/31			1 Soft	twar	e and	Com	outing	g												

Pixel Detector prototype: (by 2023) Towerjazz

Developing full size CMOS sensor for use in real size prototype, with good radiation hardness 27

CMOS

3 double ladders of silicon pixel sensors

+ Innermost layer: $\sigma_{SP} = 2.8 \,\mu m$

Low material budget ~ 0.15%X₀ per layer

Integrated sensor and readout electronics on the same silicon bulk with "standard" CMOS process:

- low material budget,
- low power consumption,
- low cost ...

Collaborating with:

- **Barcelona**, **IFAE**
- Liverpool
- Oxford
- RAL
- QMU
- UMass, US

Second Version submitted in February

Collaboration with IFAE

Integrates: FE-I3-like and **ALPIDE-like** readout architecture

TaichuPix1 Chip received in Nov 19 and tested

Design Status of TaichuPix2

Pixel size: $24 \times 25 \ \mu m^2$

- Submitted on Feb 18, 5*5mm
- All blocks fully integrated, as the final chip
- **New features**
 - A 64*192 pixel array with the same dimension as Tcpx1
 - > 32 + 32 double column modified FE-I3 readout, 32 dblcol modified ALPIDE readout
 - ➤ 6 variations of pixel analog, each for 16 columns
 - Newly integrated blocks: Two LDOs for power supplies
 - **8b10b encoder added for Triggerless** output and balanced datastream
 - X-chip buses added for multiple chip interconnections

Development path of CMOS Pixel Sensors:

Prototype	Pixel size (µm²)	Collection diode bias (V)	In-pixel circuit	R/O architecture	Main goals	Status
JadePix2	22 × 22	< 10 V (ac- coupled)	amp., discriminator, binary output	Rolling shutter	Small pixel, Power < 100 mW/cm ²	Electrical functionality verified
MIC4	25 × 25	reverse bias	Low power front- end, address encoder	Data-driven, Asynchronous	Small pixel, fast readout	Electrical functionality verified
JadePix3	16 imes 26 16 imes 23.11	reverse bias	Low power front- end, binary output	Rolling shutter with end of col. priority encoder	Small pixel, low power	Production finished

All prototypes in TowerJazz 180 nm CIS process

3.2 imes3.7 mm 2

JadePix2 (IHEP) 3 imes 3.3 mm 2

MIC4 (CCNU & IHEP)

JadePix3(IHEP, CCNU, Dalian Minzu Unv., SDU) $10.4 imes 6.1 ext{ mm}^2$

SOI Pixel Sensor Development at IHEP

Prototypes in LAPIS 200nm Double-SOI process

- 16µm *16µm with in-pixel discrimination
- Double-SOI process for shielding and radiation enhancement

- Thinned down to 75µm thick Temporal noise ~6e⁻ Threshold dispersion (FPN) ~114e⁻ Single point resolution $\sim 2.3 \mu m$
- --_
- measurement under infrared laser beam

CPV1 (IHEP) $3 \times 3 \text{ mm}^2$

CPV2 (IHEP) $3 \times 3 \text{ mm}^2$

LAPIS 200nm Pinned Depleted Diode process

- Dedicated bias scheme to minimize capacitance Optimized for low FPN 12e⁻ Pixel matrix divided as 45
- regions, to verify design options

2016.06

Mechanical Design

Ladder of inner layer(16.8 x 131 mm): 10 chips total including both sides

Calorimeter options

Chinese institutions have been focusing on Particle Flow calorimeters

International collaboration with several institutes (Italy, France, USA) Prototypes of up to ~1 m^3 to be produced by 2023

Studies started on a Crystal (LYSO:Ce + PbWO) ECAL/ Dual readout calorimetry

Detector challenges:

- Compact design
- Calibration of channels
- Cooling
- Cost

Scintillator tiles/strips (here $3 \times 3 \text{ cm}^2$) + SiPMs

New Ideas: Crystal Calorimeters

Three new segmented calorimeter proposals based on crystals

Crystals: LYSO:Ce, PbWO, BGO

Cost is an issue

Software and Reconstruction algorithms After the CDR it is a good time to re-evaluate our software tools Improve simplicity, flexibility, efficiency and collaborative nature

Simulation Software Based on standard tools

> **Root data format** DD4hep Geant4

New hit-based Fast Simulation

FATRAS (Fast ATLAS TRAck Simulation)

Workshop in Bologna, June 12-13, 2019 (FCC, CEPC, ILC): https://agenda.infn.it/event/19047/ with follow up in Hong Kong, Jan 17, 2020 (http://iasprogram.ust.hk/hep/2020/workshop_experiment.php)

> **Converged to a Turnkey Software Stack (Gaudi)** International Effort (<u>key4hep-sw@cern.ch</u>) started last year

Important to use common tools as much as possible

Reconstruction Software Considering new tracking tool

> ACTS (A Common Tracking Software)

Porting of PFA tools: Pandora and Arbor

Developing other algorithms: vertex, long-lived charged particles, particle identification in jets

Most Immediate Path for the CEPC Realization

March, 2018: Chinese Government New Plan "actively initiating major-international science project..." http://www.gov.cn/zhengce/content/2018-03/28/content_5278056.htm

focuses on

"frontier science, large-fundamental science, global impact, international collaboration"

Plan Goals

By 2020: 3-5 projects will be chosen into "preparatory stage", among which 1-2 projects will later be selected

By 2035: 6-10 projects will be cultivated

The Ministry of Science and Technology (MOST) will select and develop the projects

Key task (4): Actively participate in large scientific projects initiated by other countries

Cultivation proposal submitted in 2019

CEPC Project Timeline

HTS Magnet R&D Program

Main International Workshops

US meetings Chicago: September 16-18, 2019 https://indico.cern.ch/event/820586/ "Washington": April 22, 2019 (FEPC) https://indico.cern.ch/event/896263/

CEPC Yearly International Workshop Shanghai: October 26-28 https://indico.ihep.ac.cn/event/11444/

2020 European Edition postponed to next year Marseille, France

THE 2019 INTERNATIONAL WORKSHOP ON THE HIGH ENERGY CIRCULAR ELECTRON POSITRON COLLIDER

some phillips

November 18-20, 2019

Institute of High Energy Physics, Beijing, China

https://indico.ihep.ac.cn/event/9960

Scientific Program Committee

Paolo Giacomelli (co-chair), INFN Jianchuan Wang (co-chair), IHEP Franco Bedeschi, INFN Maria Enrica Biagini, INFN Daniela Bortoletto, Oxford Shikma Bressler, Weizmann Joel Butler, FNAL Nathaniel Craig, UCSB Sarah Eno, U. Maryland Angeles Faus-Golfe, LAL Jie Gao, IHEP Yuanning Gao, PKU bastian Grinstein, IFAE/ICREA uen Hou, IPAS van Koop, BINP Weidong Li, IHEP Michelangelo Mangano, CERN Dave Newbold, RAL Carlo Pagani, Milano Maxim Perelstein, Cornel Jianming Qian, U. Michigan Qing Qin, IHEP Aurore Savoy-Navarro, IRFU-CEA Makoto Tobiyama, KEK Chris Tully, Princeton ----Liantao Wang, U. Chicago Frank Zimmermann, CERN

Local Organizing Committee

Gang Li (co-chair), IHEP Mangi Ruan (co-chair), IHEP Jianchun Wang (co-chair), IHEP Qinghong Cao, PKU Xin Chen, THU Yaquan Fang, IHEP Jibo He, UCAS Song Jin, NHEP Haibo Li. IHÈP Zhijun Liang, INER, ianbei Liu, USTC Xin Shi, IHEP Meng Wang, SDU Yuehong Xie, CONU laijun Yang, SJTU Chunxu Yu, NKU Hao Zhang, IHEI Huagiao Zhang, IHEP Lei Zhang, NJU Yujie Zhang, BUAA Hongbo Zhu, IHEP Huaxing Zhu, ZJU

Conference secretaries: Lin Bian Mali Chen Wanyu Niu Yaru Wu

> Email: cepcws2019@ihep.ac.cn Tel: +(00)86 1088236054 +(00)86-17610430906

US Snowmass, 2021 and CEPC

• Letters of Intent

- **areas** (each of the LOIs is 2 pages in length)
 - CEPC e⁺e⁻ Detector R&D and experiment
 - CEPC Physics and simulation
 - CEPC e⁺e⁻ Accelerator
 - SppC accelerator superconducting magnet R&D
- Planning to submit others Lol focused on specific R&D or scientific questions
 - Everyone is welcome to join these according to their interests

• Contributed papers

- physics and/or R&D. These will have to come from individuals interested in contributing
- Deadline: July 31, 2021

Meanwhile, ...

• CEPC will submit four overview Letters of Interest (LOI) to Snowmass that cover four main CEPC-SppC

• Will work in the context of the Snowmass process and plan to submit several contributed papers in

Look forward to hear about the outcome of the European Strategy Process

Final remarks

The Higgs at 125 GeV makes e+e- circular machines an exciting possibility **CEPC** accelerator studies well advanced

- Two significantly different detector concepts developed but
- final detectors are to be defined by International Collaborations and they are likely
 - to incorporate a mixture of the technologies explored so far

2022: CEPC Accelerator TDR expec **2023: CEPC International Detectors** 2030: Data-taking ideal starting da

CEPC aims to be an International Global project At least one future high-energy eter collider should be built Continued world-wide coordination effort is crucial to realize such project

CEPC CDR: http://cepc.ihep.ac.cn/

Key accelerator and detector technologies R&D continues and are being prototyped

ted	Large synergies between
TDRs	needed R&D and already
te	approved projects

Extra Slides

CEPC web site

http://cepc.ihep.ac.cn/

Future High Energy Circular Colliders

The Standard Model (SM) of particle physics can describe the strong, weak and electromagnetic interactions under the framework of quantum gauge field theory. The theoretical predictions of SM are in excellent agreement with the past experimental measurements. Especially the 2013 Nobel Prize in physics was awarded to F. Englert and P. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider".

After the discovery of the Higgs particle, it is natural to measure its properties as precise as possible, including mass, spin, CP nature, couplings, and etc., at the current running Large Hadron Collider (LHC) and future electron positron colliders, e.g. the International Linear Collider (ILC). The low Higgs mass of ~125 GeV makes possible a Circular Electron Positron Collider (CEPC) as a Higgs Factory, which has the advantage of higher luminosity to cost ratio and the potential to be upgraded to a proton-proton collider to reach unprecedented high energy and discover New Physics.

The CEPC input for the European Strategy

Accelerator

Accelerator Addendum

Physics and Detector

Physics and Detector Addendum

Panel Discussion on Fundamental Physics

Recent Events

The 2019 International Workshop on the High Energy Circular Electron Positron Collider, IHEP, Nov. 18-20th, 2019

The 2018-2019 yearly Meeting of MOST project "High Energy Circular Electron Positron Collider Key Technology Research and Validation' was held in IHEP

More..

CEPC Conceptual Design Report

CEPC CDR Volume I (Accelerator)

CEPC CDR Volume II (Physics and Detector)

More...

Download

What's new After the Higgs discovery: Where is the Fundamental Physics going?

Cost of project

Total cost of CEPC

Cost of detectors not evaluated in detail and not part of the Conceptual Design Report done moving forward towards the TDR Jarei Ur Co

Coïlider

Power consumption evaluation **Power consumption during Higgs running: 266 MW**

Tevatron: 58 MW;

22% efficiency (larger than other projects): 60 MW beam \rightarrow 266 MW total

Power consumption mitigating measures

Limit synchrotron radiation power to 30 MW per beam

Use superconducting RF cavities

Use high efficiency klystrons

Use permanent magnets in the 1 km Linac to **Booster transport lines**

Use a 2-in-1 structure for Collider dipoles and quadrupoles

Combine dipole and sextupole functions in the Collider bending magnets

Use a large coil cross section in the quadrupoles

LHC, 7 TeV: ~180 MW

44

Main Parameters of Collider Ring (CDR)

	Higgs	W	Z (3T)	Z (2T)	
Number of IPs		2			
Beam energy (GeV)	120	80	45	5.5	
Circumference (km)		100			
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.0)36	
Crossing angle at IP (mrad)		16.5×2			
Piwinski angle	2.58	7.0	23	8.8	
Number of particles/bunch N _e (10 ¹⁰)	15.0	12.0	8	.0	
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25ns+10%gap)		
Beam current (mA)	17.4	87.9	46	1.0	
Synchrotron radiation power /beam (MW)	30	30	16	5.5	
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001	
Emittance ε _x /ε _y (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016	
Beam size at IP σ _x /σ _y (μm)	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04	
RF frequency f _{RF} (MHz) (harmonic)		650 (2168	16)		
Bunch length σ _z (mm)	3.26	5.9	8	.5	
Photon number due to beamstrahlung	0.29	0.35	0.	55	
Lifetime (hour)	0.67	1.4	4.0	2.1	
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1	

Challenge: Low-field dipole magnets in Booster ring

Booster Cycle (0.1 Hz)

29 Gauss	338 Gauss	29
10 GeV from Linac	120 GeV injection to collider	fro

On-going R&D program

Gauss 0 GeV om Linac

Earth magnetic field: 0.25 to 0.65 Gauss

High luminosities in circular colliders

Property		FCC-ee	(100 km)	CEPC (100 km)			
Beam energy (GeV)	45.6	80	20	175	45.6	80	
Luminosity/IP (10 ³⁴ cm ⁻² s ⁻¹)	230	28	8.5	I.5	32	0	
Bunches/beam	16640	2000	393	48	12000	1524	2
Bunch separation (ns)	20	160	830	8300	25	260	6

Luminosity up to $\sim 10^{36}$ cm⁻²s⁻¹

Large number of bunches

Consequences for detector design

Crossing angle at IP Bunch separation impacts overall designs No power pulsing of detectors

