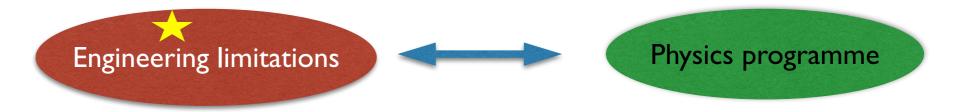
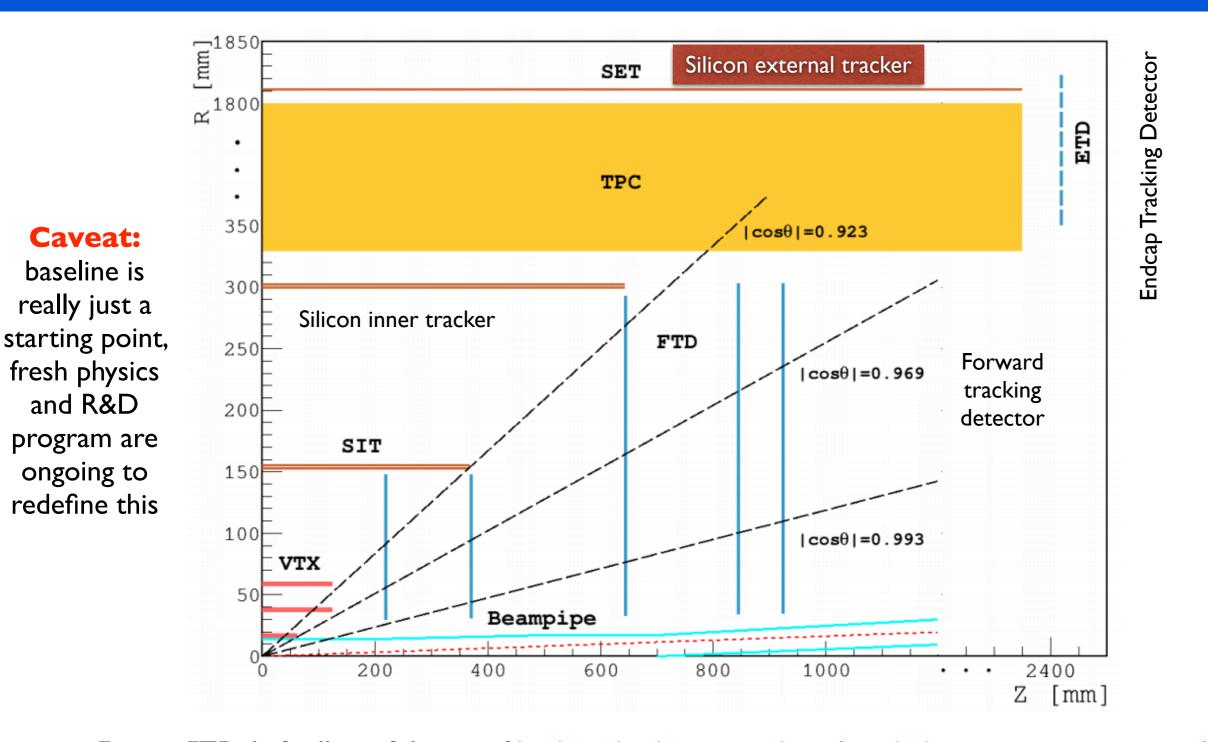


ATLAS Pix3 based tracker demonstrator discussions


Yanyan Gao

University of Edinburgh

Second UK workshop on HV-CMOS tracker for e+e- colliders, I-June-2020

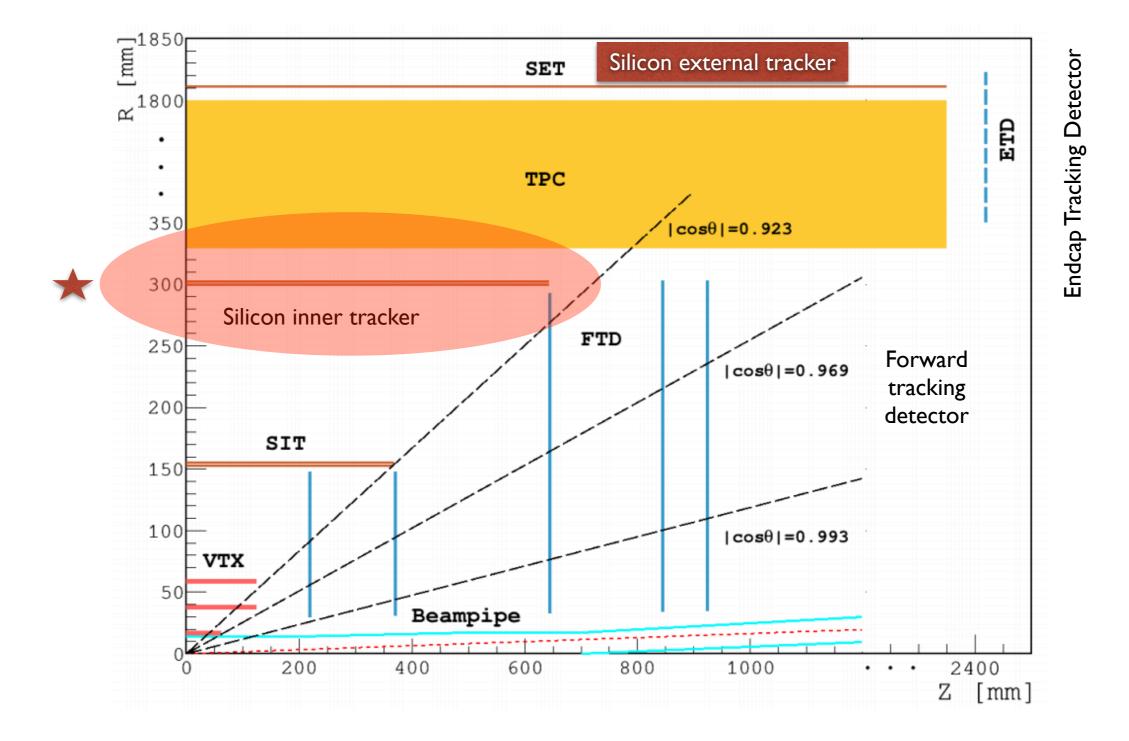

Starting point

- There is essentially NO specifications on the tracker
 - A wishlist can be found via the CDRs from various proposals

- Goal of this demonstrator
 - Establish what can be achieved using the state-of-the-art solutions
 - We simply do not have resources (mostly limited by staff time) to do further
 - Define the challenges and directions for future R&D with more funding/staff time
 - At the end (~end of 2022), we will have a credible, UK unique, and flexible programme
 - Suitable for large area application for any e+e- collider experiment
- What drive the key considerations for demonstrators?
 - Large area applications: low power, scalable, and modular
 - A long-term UK strategy on the HV-CMOS program

The "Baseline" Tracker in CDR

Except FTD 1+2, all use 2 layers of back-to-back mounted single-sided strips at an stereo angle Sensor: 10 × 10 cm², pitch 50µm, Thickness <200µm <u>Strip design with ~300-400 µm thickness per layer alone gives 0.3-0.4% X₀</u> Effective silicon area for strip: 160m², pixelated design reduces to 80m²


Closer look

	With TPC	All silicon
Barrel	SIT-L1: R=0.15m, L=0.75m \rightarrow A=0.7m ² SIT-L2: R=0.3m, L=1.33n \rightarrow A=2.5m ² SET: R=1.8m, L=4.7m \rightarrow A=53m ²	?
Endcap	FTD DI-D5: I.8 m ² ETD: R_{out} =I.82m, R_{in} =0.42m \rightarrow A=20 m ²	
σ _{SP (rφ)}	7 µm	
OSP (Z)	Very loose ~ 100 µm	
Timing	25 ns	
Max* Occupancy	SIT-L1: 0.6%, SIT-L2: 10-3, SET: 10-4	
Radiation	TID ~< IkRad/year, NIEL ~< 1010 I MeV neq /cm². year	
dE/dX	-	2-3% @ pT [2-10]
X/X ₀	0.65% Barrel 0.5-0.65% Endcap	?

- SET+ETD: 73 m² out of the total area of 78 m²
 - Given the large difference w.r.t. the rest, we may end up with different technologies
 - What are the realistic target we should aim for in this demonstrator?

*Assumption: Pixel dimension: 50 μ m \times 350 μ m, readout time: 10us, Cluster size: 9 hits per track

The "Baseline" Tracker in CDR

5

December 2019 discussions (in RAL)

- Tracker prototype deliverables (2 Year plan)
 - A local support structure with sensors on
- Short-term milestones
 - 2-3 Quads with Zif connectors?
 - CF space frame Hongbo
 - Cold plate
- Long-term R&D considerations
 - New sensor/chips
 - Chinese fab
 - Aluminium flexes?
 - Copper (Ioz/ft^2, 35um thick) is about 0.2% radiation length
- Impact of the alignment on the overall tracker design
- Full size support for the outer layer

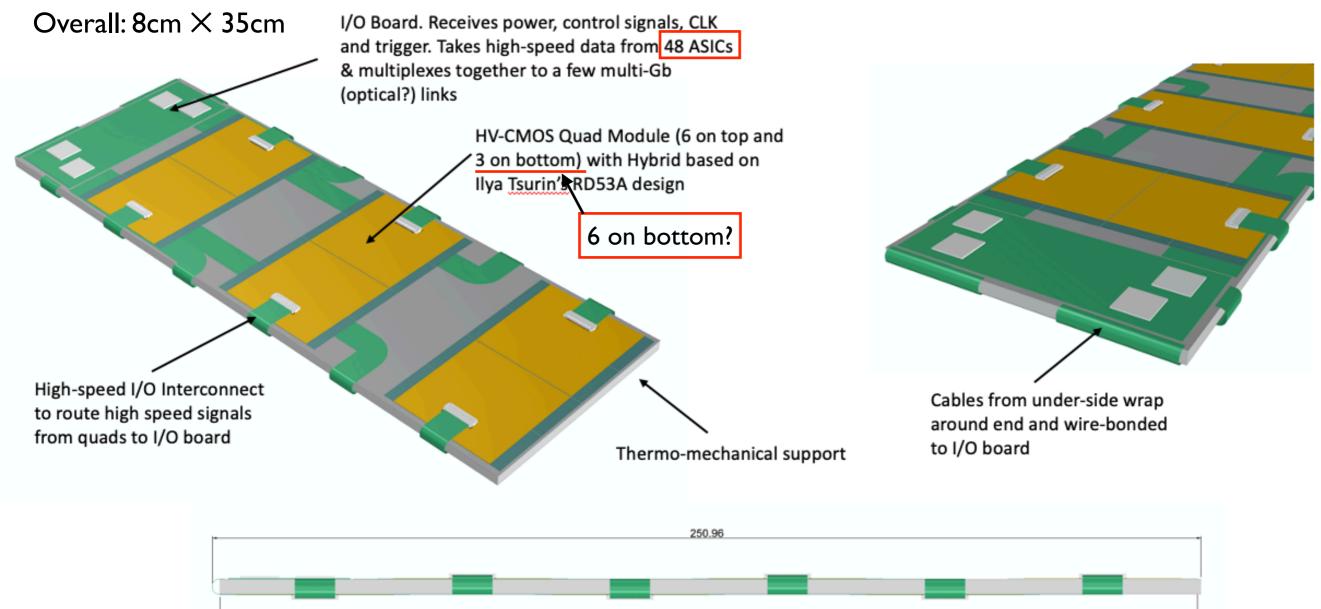
Link to discussion google doc

Goal for today's discussions

- We hope to converge on a set of essentials and desirables in the following 4 areas
 - Sensor and chips
 - Electrical and system
 - Readout and DAQ
 - Mechanical support structure

Sensors and chips

• Essential



- Desirables
 - Contribute to the subsequent engineering runs and submissions

Electrical system: Tile concept proposed by Tim Jones

See talks by Tim in the last UK meeting <u>Link to Tim's talk</u>

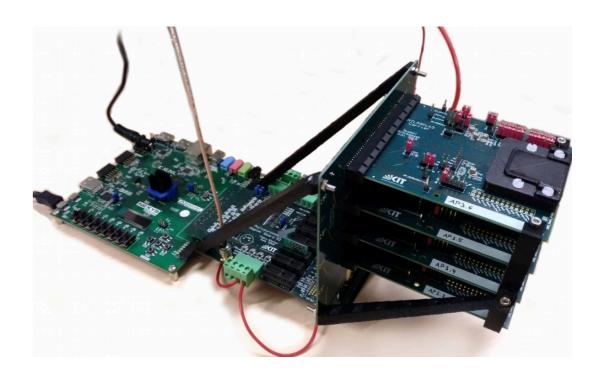
Tile Conceptual Design

248.20

Electrical system

- We will start with charactering 1-2 quads
- Shall we aim to readout all 48 chips simultaneously
 - What can we gain in comparison to the I-2 quad electrical modules
 - System design
 - First glimpse of potential service routing
 - Identify the "limit" of a modular design
- Essential electric solutions
 - Quad flex from Milano, see recent talks in this link by Attilio Andreazza
 - Bus-tapes
 - Is serial powering essential?
- Desirables:
 - Optical solution using GBTx or LpGBTx

Readout DAQ


- The KIT GECCO readout system
 - See Rudolf Schimassek's talks
 - Link to CEPC tracker meeting talk
 - Link to UK e+e- collider HV-CMOS mtg
 - Find out the max chips this can be configured

✓ PCBs have been ordered

- YARR
 - Hardwares ready
 - Non-trivial firmware adaptation
- Caribou system
 - ATLAS Pix3 solution in principle ready
 - RD50 collaboration is organising purchase for the next version
 - Most UK institutes do not have yet the expertise

Mechanical support - essentials

• Support structure

- $8 \text{cm} \times 66.6 \text{cm}$ structure to be made for the intermediate tracker layer (SIT-L2 in CDR)
- This can in principle host two tiles
- Cold plate
- Cooling
 - Foam with Ti cooling and facesheet
 - Liverpool FEI4 demonstrator or the Strip stave might be a good starting point
 - Graphite (this was already explored in the UK Ring-0 prototype, see Jon's talk above)

Mechanical support - desirables

- Support structures
 - Space-frame like truss
- Cooling
 - Micro-channel