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The physical connection between the evolutionary history of a galaxy and 
the dark matter halo which hosts it can be modelled, using 
hydrodynamical simulations, abundance matching, etc (see fig. I). but 
lacks a general formulism [1].

Computing baryonic physics in line with N-body dark matter simulations 
adds complexity to the task, and limits the volume and resolution of 
simulations (i.e. the large and small scales of the universe) which can be 
captured [1,2].

The large-scale cosmic structures housing the largest galaxies, as well as 
small-scale local environments, can have a profound influence on the 
galaxy population [1,3]; we seek to include these simultaneously. 

We use a machine learning algorithm, specifically, recurrent neural 
networks, to compose a model which can predict the stellar formation 
histories of galaxies from the assembly of their dark matter halos.

We hope to apply this methodology to large volume simulations, 
reproducing galaxy formation in fine detail, with accelerated 
computational efficiency.

Our predictions may be used to infer observational data (e.g. galaxy 
spectra) and create mock catalogues, to complement the DESI survey.

Fig. I: A visual summary of existing measures used to model the galaxy-halo connection. 
The left image shows the dark matter distribution from an N-body simulation, to which a 
baryonic component can be applied by physical modelling. The right shows an empirical 
approach, in which galaxies of a given makeup are hierarchically assigned to halos based on 
observations [1].
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Approach
The machine learning algorithm is being developed and tested using data 
from the IllustrisTNG cosmohydrodynamical simulations. We use TNG100-1 
and TNG300-1: high mass resolution simulations in volumes (100Mpc)3 and 
(300Mpc)3, respectively.

In the TNG simulations, the larger volume simulations contain more objects 
and offer a better sampling of the highest mass galaxies. However, they 
have a much lower mass resolution [4]. We therefore use TNG100-1 to 
sample intermediate mass objects, and TNG300-1 for high mass objects.

Our neural networks use time-dependent and time-independent features; 
we are using a simple recurrent neural network layer for halo formation 
histories and standard dense layers for other properties.

Current Input Data: Halo mass at z=0, times at which fractions of the final 
mass formed, NFW concentration, halo mass accretion rates for all time.
Output Data: Galaxy Mass, stellar age spectrum.

In future, the local environment surrounding the target halos will be 
quantified and tested, and additional baryonic properties required to 
recreate observed data will be added.

Halo Properties

Baryonic Properties

Observables

Fig. II: A schematic illustrating the 
simplified structure of the neural network 
being developed. DM properties of the host 
halo are used to predict the baryonic 
properties of the contained galaxy, from 
which observable data can be inferred.
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Results
We have predicted the expected relation between stellar and halo mass, 
including the mass-dependent scatter, thereby capturing the variance in 
galaxy formation histories (see fig. III).

The mass-weighted stellar age of the galaxy is used to characterise the full 
stellar formation history and assess the credibility of the predicted age 
spectrum. The similar distributions of the true and predicted stellar ages in fig. 
IV show that these are in general agreement.

The smooth shape of the stellar accretion rate is apparent, but sharper 
features are mostly absent. On close inspection, many small features coincide 
with small variations in the halo accretion rate.

Larger, sharper changes in the stellar age spectra (e.g. spikes corresponding to 
star formation bursts) cannot be inferred from mass assembly alone [3,5], and 
are seldom shown by our neural networks.

We find that halo masses, early accretion and maximum accretion rates are 
strongly correlated with our targets. However, times of formation and merger 
information have been less informative.

We believe that the dark matter distribution in proximity to the target halo will 
be useful for predicting galaxy formation [3, 6], yet we have not tested this.

In short: AI is working, but it needs more information!

Fig. III: The predictions of an example neural network. On the left, the relation between 
stellar and halo mass, where the predicted points (blue) closely match the trend and 
scatter of the original data (red). On the right, the halo assembly rate (red, M

☉
/Gyr) and 

the corresponding stellar mass assembly from the original data (blue) and predicted by 
the network (cyan). The trend in stellar assembly rate is well predicted; more subtle 
features are uncorrelated with the input data and therefore not predicted.
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Fig. IV: The mass-weighted stellar 
age of all target galaxies, plotted 
as a function of halo mass at z=0, 
and computed by averaging over 
the stellar age spectrum of the 
TNG simulation data (red) and the 
stellar age spectrum returned by 
the neural network (blue). The 
similar shapes of both distributions 
indicate that the stellar formation 
history has been well recovered.



  

Outlook
In future, we will attempt to characterise the local environment surrounding 
the halo and its merger history, as these have profound consequences on 
galaxy evolution [3,5]. Such quantities are alluded to in fig. V.

We will also develop this algorithm to predict corresponding star populations, 
and properties such as sSFR, age and metallicity; ultimately, the necessary 
information to construct galaxy spectra [7].

We will simulate a mock galaxy survey by applying the final neural network to 
a DESI-volume N-body dark matter simulation. This will capture the full range 
of halo masses and environments and reproduce a sample of galaxies much 
larger than the TNG simulations.

In order to identify the driving factors of the galaxy-halo connection, we may 
use covariance calculations or PCA (already used in some of our neural 
networks) to identify which halo and galaxy parameters are most tightly 
correlated. The mock surveys we construct should echo these constraints.

Fig. V: A schematic showing how the local environment and merger history of a halo may be 
quantified. The left indicates the sum of mass over distance for all halos in proximity to a target 
object. The right depicts the mass ratio of the most recent merger event in a halo’s history; 
applicable to all mergers at all times [3].
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