Exploring the environments of SMGs using narrowband observations

Thomas Cornish (He/Him) Lancaster University Supervisor: Dr Julie Wardlow

Motivation

- Submillimetre galaxies (SMGs):
 - dusty, star-forming galaxies at high-z
 - extremely high SFRs
 - extremely IR-luminous.
- Studying their environments can provide insight into their evolution.
- This study: do SMGs typically reside in protoclusters?

Aravena et al. (2020)

SMGs: Early-Type Galaxy Progenitors?

- Local early-type galaxies are...
 - massive
 - thought to have formed most of their stellar content in short bursts before $z \sim 2$
 - typically found in galaxy clusters.

An example of a galaxy cluster.

SMGs: Early-Type Galaxy Progenitors?

- SMGs are...
 - massive
 - undergoing intense bursts of star formation at a median redshift of $z \sim 2-2.5$
 - typically found in ??? environments.

False colour images of various SMGs.

Red: ALMA Green: F160 Blue: F814 or F160

Hodge et al. (2016)

Protoclusters

- Supergalactic structures usually found at $z \ge 2$.
- By z = 0 they expected to evolve into the galaxy clusters we see locally.
- Not usually virialized, nor containing a hot ICM.
- Characterised by an overabundance of galaxies.

Evolution of a simulated protocluster.

SMG Environments: What Do We Know?

- Clustering measurements suggest SMGs typically reside in overdense regions, but...
 - many of these are uncertain, being largely dependent on photo-zs
 - non-uniform coverage requires complicated modelling to bridge the gaps
 - typical SMG environment not yet determinable with clustering measurements.
- SMGs have been observed in protoclusters, but...
 - existing SMG samples are inherently biased towards overdense environments.

This Study

- Using VLT/HAWK-I narrowband imaging to measure ALESS SMG environments.
 - two photometric filters used: one broadband (Ks) and one narrowband (Br γ)
- No prior knowledge of these environments.
- Data covers two 7.5'×7.5' regions within the ECDFS, containing 3 SMGs:
 - ALESS 005.1 (z = 3.303)
 - ALESS 075.2 (z = 2.294)
 - ALESS 102.1 (z = 2.296).

Thomas Cornish

• SMGs selected because of their redshifts...

The photometric filters used for this study.

Searching for Potential Protocluster Members

- Star forming galaxies => strong emission lines.
- Emission lines redshifted into Brγ wavelength range:
 - $H\alpha (z = 2.3)$
 - [OIII] (z = 3.3).
- Expect ~15 H α emitters per pointing, based on blank-field estimates.

$Br\gamma$ image

Ks image

(Br γ - Ks) image

Candidate NB emitters: Colour-Magnitude Diagrams

Pointing 1

Pointing 2

Universit

Candidate NB Emitters: Redshifts

- So far, had only identified candidate line emitters in general
 - these could include several possible lines at various redshifts.
- Needed to identify any line emitters at the same redshifts as the SMGs
 - i.e. are they H α ([OIII]) emitters at z = 2.3(3.3)?
- Done by cross-matching our data with a reference catalogue which contains multiband photometry and photo-z's across the entire ECDFS.

Candidate NB Emitters: Redshifts

Pointing 1

Pointing 2

Thomas Cornish

Physics

Candidate NB emitters: Positions

Pointing 1

Pointing 2

Universit

Conclusions & Future Work

- We have conducted a narrowband study in search of overdensities of star-forming galaxies around three known SMGs at $z \sim 2.3$ and $z \sim 3.3$.
- Our results hint at a substantial overdensity around at least one of the SMGs.
- Further analysis required to determine if the other two SMGs reside in significant overdensities.
- Next steps:
 - try to determine photo-zs for candidates at currently unknown redshifts,
 - analyse any significant overdensities statistically,
 - fit SEDs to NB emitters, derive SFRs and stellar masses.

Thank you

Selection of Narrowband Emitters

- Data were reduced using a custom Python-based pipeline.
- $Br\gamma$ detections were used to define the aperture positions for photometry.
- Photometry was extracted from the Ks and $Br\gamma$ images.
- Magnitudes in Ks and $Br\gamma$ were used to compute:
 - the significance of the Ks-Br γ colour excess, Σ
 - the observed equivalent width, EW.
- Sources were identified as narrowband emitters if:
 - $\Sigma > 3$
- EW > EW $(3\sigma_{Ks-Br\gamma})$.

$$\Sigma = \frac{1 - 10^{-0.4(BB - NB)}}{10^{-0.4(ZP - NB)} \sqrt{\pi r_{ap}^2 (\sigma_{NB}^2 + \sigma_{BB}^2)}}$$
$$EW = \Delta \lambda_{NB} \frac{f_{NB} - f_{BB}}{f_{BB} - f_{NB} (\Delta \lambda_{NB} / \Delta \lambda_{BB})}$$

Colour-colour Diagrams

- Still lots of candidates with unknown *z*.
- Can be estimated using cuts in colourcolour space.

Sobral et al. (2013)

