The linked orbital and star formation histories of satellite galaxies

> Kyle Oman (he/him) Durham ICC

JO204 in A957 (courtesy Deb+2020)

*not to scale

"Infall"

RUIT

Accretion ceases on approach

First pericentre:

- Maximum ram pressure
- Maximum tides

First apocentre (backsplash)

Perseus (Bob Franke/retrieved from APOD)

The model

- Select simulated galaxies around clusters at z~0.6
- Track forward/ backward to determine time since/ until first pericentre *t-t*_{fp}
- Bin by *t-t*_{fp} and determine fraction of active (star forming) galaxies

- Suppose for now that t-t_{fp} is magically observable...
- Constrain parameters of the model

Orbits in (projected) phase space

Arthur+2019

Orbital parameter distributions

- Now can take into account likely orbits for each satellite.
- Constrain parameters of the model

- Now can take into account likely orbits for each satellite.
- Constrain parameters of the model

Model constraints: SDSS + ALFALFA

Physical interpretation

- Clusters:
 - Partial ram-pressure stripping of neutral gas on initial approach, enough to drop out of ALFALFA.
 - Remaining gas fuels star formation for ~3 Gyr after pericentre.
- Groups:
 - Quench some satellites, but most survive ~longer than the age of the Universe?
 - The typical group satellite has not had time to be quenched by its host.
 - Or perhaps the merging timescale < the quenching timescale.

Summary

- Clear detection of the sequence of environmental processing:
 - Gas stripped (non-detections from ALFALFA)
 - Star formation shuts off (Balmer lines disappear, reddening)
- Broadly consistent with the 'delayed-then-rapid' picture for quenching, but find longer timescales than most others.
- Contrast with contemporary simulations where quenching tends to be early, ~during the first passage, especially in clusters.

Physical origin of the quenching timescale

1.0

Mass $[10^9 M_{\odot}]$

0.0

2

3

5

The future: individual SFHs

Upadhyay+ in prep

The future: individual SFHs

Upadhyay+ in prep