LOFAR SOURCES IDENTIFICATION WITH

MACHINE LEARNING

www.lofar-surveys.org

LARA ALEGRE (SHE) - PHD STUDENT SUPERVISORS: PROF. PHILIP BEST & DR. JOSE SABATER

e.g.

ELAIS-NI 20 µJy/bm

1 degree

LOTSS LOFAR TWO-METRE SKY SURVEY

LoTSS-DRI

- HETDEX
- 424 deg² (2% LoTSS)
- 58 pointings
- Radio sources: 318542
- Optical counterparts: 71% of the radio sources (PanSTARSS, WISE), Williams et al., 2019

LoTSS-DR2

- 13h and 0h fields
- 5700 deg² (27% LoTSS)
- Radio sources: 4.3M
- in prep
- Status of DR2 (observations + LGZ)

LOTSS-DRI Cross-identification

LIKELIHOOD RATIO TECHNIQUE & VISUAL ANALYSIS

WILLIAMS ET AL., 2019 "FLOWCHART" ONE BIG DECISION TREE

LOFAR GALAZY ZOO

Source name ILTJ133142.18+503610.6 (RA 202.936 DEC 50.603)

PyBDSF gaussians LOFAR radio (150 MHz) FIRST radio (1.4-GHz) + WISE (IR.WI band) × PANSTRARRS (optical, r band)

RADIO PYBDSF SOURCES

- MULTIPLE RADIO COMPONENTS
- EXTENDED EMISSION
- BLENDED

SUITABLE FOR STATISTICAL CROSS-MATCH

NOT SUITABLE FOR STATISTICAL ANALYSIS

4

LOTSS-DRI Cross-identification

MACHINE LEARNING DATASET CREATION

CLASS I LR

- Pybdsf sources that were not associated with other PyBDSF sources
- were not deblended
- sources for which LR gave correct optical ID (or correctly lack of ID)

CLASS 0 LGZ

- PyBDSF sources that were associated with other sources in LGZ
- deblended into more than one source
- LR obtained
 incorrect ID

- Number of sources in class 0: 15751
- Number of sources in Class I: 307352
- Exclude the artefacts: 2591

CREATE A BALANCED DATASET

DOWNSAMPLING THE MAJORITY CLASS 75% TRAIN 25% TEST

MACHINE LEARNING FEATURES

METHOD - SUPERVISED ML ENSEMBLES OF DECISION TREES

Hyperparameters	Search values	Best GBC
learning_rate	0.001, 0.01, 0.05, 0.1, 0.5, 1	0.01
n_estimators	100, 250, 500, 1000	500
max_depth	range $(1, 11, steps = 1)$	8
subsample	range (0.05, 1.01, steps = 0.05)	0.15
min_samples_split	range (2, 21, steps = 1)	12
min_samples_leaf	range $(1, 21, steps = 1)$	5
max_features	range (0.05, 1.01, steps = 0.05)	8 0.6

MAJORITY OF THE VOTES

RANDOM FOREST

- MINIMIZATION OF TOTAL LOSS
- MORE WEIGHT TO MODELS WITH BETTER PERFORMANCE

GRADIENT BOOSTING CLASSIFIER

Results Model performance

	test	train
Accuracy	0.9460	0.9590
F1-score 1	0.9452	0.9582
F1-score 0	0.9468	0.9597

- Train vs test performance: avoid overfitting
- FI-score: performance on the different classes
- 96.4% of the sources that need visual inspection are sent to LGZ (but a different component of the same source may be sent to visual inspection)

Results Fails and corrections

BLENDED SOURCE ILTJ145409.19+503619.4

RESULTS THRESHOLD VALUE AND CONFUSION MATRIX

• Threshold value of 18%

Visual inspections - 10% False positives - 30%

SUMMARY & WORK IN PROGRESS

THANKYOU

LARA ALEGRE - PHD STUDENT SUPERVISORS: PROF. PHILIP BEST & DR. JOSE SABATER

