

Testing accretion disc theory with high-cadence reverberation mapping

Juan V. Hernández Santisteban

Keith Horne, Rick Edelson, Jonathan Gelbord,+

XVII DEX Virtual Workshop 7 January 2021

Image credit: Nika Maisuradze

The structure around a supermassive black hole

Marin, 2016, MNRAS

Accretion discs in Active Galactic Nuclei

Central Engine of AGN -> small angular size

Credit: ESO/M. Kornmesser

GRAVITY COLLABORATION+, 2018, Nature

- AGN Spectral Energy distribution (SED) is different from LMXBs "analogues"
- Timescales of change (Changing Look Quasars)
- Accretion disc sizes don't agree

Stringent tests of accretion theory are required!

Testing accretion onto AGN

- AGN SED
- Timescales of change (CLQs)
- Sizes don't agree

Davis, Done & Blaes 2006, ApJ, 647, 525

Temperature profile?

Should peak in the EUV, but peak is closer to 100 nm

UV opacities might be key?

Testing accretion onto AGN

- AGN SED
- Timescales of change
 (Changing-Look Quasars)
- Sizes don't agree

Disappearing broad emission lines In timescales of <10 yr

Testing accretion onto AGN

- AGN SED
- Timescales of change (CLQs)
- Sizes don't agree

Microlensing (factor ~3-30 larger) e.g., Poole+ 2007, Morgan+ 2018

Disc Reverberation Mapping (factor ~3-5 larger) e.g., Edelson+ 2019

7

Disc Reverberation Mapping

- AGN SED
- Timescales of change (CLQs)
- Sizes don't agree

Lamp-post model

Trade-off angular resolution for temporal resolution

Disc Reverberation Mapping

As mass moves inwards, temperature increases!

"Jaw-breaker schematic"

$$\tau = R/c \propto (M\dot{M})^{1/3} \lambda^{4/3}$$

We expect larger lags at lower temperatures (large wavelengths)

Disc Reverberation Mapping

Fausnaugh+ 2016, ApJ, 821, 56

"INTENSIVE" Disc Reverberation Mapping

Edelson+ 2019 , ApJ, 870, 123

Lags largely consistent with $\tau \propto \lambda^{4/3}$

U-band excess —> Diffuse Continuum Emission from the BLR! e.g. Korista & Goad 2019

Intense Disc Reverberation Mapping

Fairall 9

Hernández Santisteban+ 2020, MNRAS, 498, 5399

Fairall 9: test case

- Seyfert 1
- *z* = 0.047
- Low extinction; E(B-V)=0.024
- $M_{BH} = 2.6 \times 10^8 M_{\odot}$
- X-rays, very clean source

HST image. Credit: A. Barth

Fairall 9

 $n_{H} \sim 10^{20} \text{ cm}^{-2}$

Pal+, 2017, MNRAS, 466, 1777

Absorption is not responsible for the variability observed

-> Clean view of the central engine!

Evidence for continuum lag -> CAVEATS: large uncertainties

Intensive Disc Reverberation Mapping

Key Projects in:

Monitoring 3+ years on daily cadence

Fairall 9: the data

Year 1

High signal to noise: SNR~50-80

<u>Swift</u>

- Xrays (SX & HX)
- UV (3 filters)
- Optical (3 filters)
- Mean Cadence ~1.1 days

Las Cumbres Observatory

- Optical (7 filters, 400-900 nm)
- Mean cadence ~0.36 days
- Total Exposure: 630 ks
- Additional spectroscopy, 4 day cadence

Hernández Santisteban+ 2020, MNRAS, 498, 5399

Fairall 9: Two variability components

Hernández Santisteban+ 2020, MNRAS, 498, 5399

Fairall 9: Lag Spectrum

ICCF

- Lags larger than predicted!
- Evidence for diffuse continuum in the lag spectrum

Hernández Santisteban+ 2020, MNRAS, 498, 5399

Fairall 9: Dissecting the Variable Component

 $F(\lambda, t) = C(\lambda, t) \cdot X_0(t) + S(\lambda, t)$

Hernández Santisteban+ 2020, MNRAS, 498, 5399

Fairall 9: Dissecting the Variable Component

Hernández Santisteban+ 2020, MNRAS, 498, 5399

AVA - AGN Variability Archive

Legacy Database for AGN variability studies!

(PI Hernandez Santisteban)

AVA AGN Variability Archive

AVA Archive About Data Format Publications

Intensive disc reverberation mapping targets

Select an object for more information

archived = All the available data is processed and archived. ongoing = Data is being collected. programmed = Observation campaigns are scheduled. to be added = Target has been observed but not archived.

Show	10 v entries	Search:																
ID \$	Name	\$ RA (h : m : s)	\$	DEC (° : ' : ")	\$	V _{mag} ♦	log(L) (erg/s)	¢	log(M) (M _☉) \$	redshift 🗘		LCO (ks) ≑	Swif (ks)	t ¢	Othe (ks)	r ¢	Status	\$
12	Mrk 110	09:25:12.8		52:17:10.38		16.41	44.54		7.4	0.0355		0	0				archived	
35	Mrk 1220	08:54:39.24		17:41:22.42		16.3	0		0	0.06546		0	0				archived	
10	Mrk 142	10:25:31.29		51:40:34.9		16.2	43.54		6.29	0.045		0	0				archived	
29	Mrk 335	00:06:19.53		20:12:10.61		13.85	0		0	0.02541		0	0				archived	
11	Mrk 509	20:44:09.75		-10:43:24.72		13.2	45.08		8.12	0.034076		0	233.	85			archived	
9	Mrk 876	16:13:57.21		65:43:10.7		15.4	44.71		8.34	0.139		0	0				archived	
34	NGC 2617	08:35:38.79		-04:05:17.90		13.2	43.63		7.51	0.0143		0	0				archived	
14	NGC 4151	12:10:32.57		39:24:21.05		11.4	43.2		7.54	0.0032		0	314.	45			archived	
13	NGC 4593	12:39:39.44		-05:20:39.03		13.15	43.8		6.9	0.0083		0	172.	31			archived	
8	NGC 5548	14:17:59.5		25:08:13		13.7	44.1		7.7	0.01718		0	166.	88			archived	

Showing 1 to 10 of 35 entries

Previous 1 2 3 4 Next

Hernández Santisteban, Horne & Edelson, in prep

Conclusions

- Multi-mission echo mapping experiments are providing high-quality data to test accretion physics onto Supermassive black holes
- Fairall 9 is a fantastic clean test-site for many experiments
 - Lags are consistent with thin accretion disc prediction: $\tau \propto \lambda^{4/3}$
 - Two distinct variability components in opposite directions
- New 2020 LCO Key Project will deliver 8 more targets for 3 more years!!!

@Alymantara

alymantara.com/idrm

Las Cumbres **Observatory** <u>https://lco.global/science/keyprojects/</u>