Long-Lived Particles and the Third Generation

PPE Christmas Meeting – 11th December 2020

Sinéad Farrington, Jack Gargan, Guillermo Hamity, Victoria Parrish, Akanksha Vishwakarma, Estifa'a Zaid

Long-Lived Particles (LLPs)

- Quest for New Physics
 - SM ~ 5%; a lot left to learn about (dark matter)
- LLPs are well motivated
 - by broad set of models such as dark sector, heavy neutral leptons which give rise to long-lived signatures
 - prompt searches at ATLAS/CMS not yet yielded signs of new physics, might be "blind" to unconventional processes *e.g.* involving LLPs

- Much attention (experimentally and theoretically) to LLP decays to 1st and 2nd generation fermions
 - Less so to 3rd generation, though it has special reasons to be a significant part of the LLP story

Edinburgh Team

- Sinéad's team is working on ERC project (OPEN3GEN), started in 2019, to develop experimental sensitivity to LLPs decaying to τs in ATLAS
 - Jack Gargan, Guillermo Hamity, Victoria Parrish, Estifa'a Zaid
 - Akanksha Vishwakarma (Train@Ed Fellowship)
 - Sara Alderweireldt (will join soon)
- Part of the ERC project is to host workshops p with theorists to discuss ideas and model benchmarks
 - 1st one held in November 2019 (<u>Indico page</u>)
- Aim of the workshop
 - Identify existing benchmark theoretical models
 - Identify areas which are ripe for further work
 - Foster a community who will meet twice more to discuss the theoretical issues in the search for LLPs decaying to 3rd generation

D

Why Is 3rd Generation Special

 Motivated search for new physics with mass-dependent couplings (many models predict some mixing with Higgs, hence mass-dependent)

Hadronic tau decays give polarisation information to access spin/dynamics of LLPs if discovered!

11/12/2020

Theories Motivated for 3rd Generation Searches

• LLPs as dark scalars

- Dark scalar inherits Higgs' Yukawa-type couplings
- Favours 3rd gen. fermions, τ for light ($2m_{\tau} < m_{S} < 2m_{b}$) scalar

Susanne Westhoff

Theories Motivated For 3rd Generation Searches

Jan Hajer

LLPs as heavy neutral leptons

- For low masses, couplings HNLs can achieve large lifetimes
- e/µ-mixing HNL well-constrained by ATLAS/CMS
- Currently quite limited sensitivity to U_{τ^2} potential!

LLPs as FIMP mediators

<u>Nishita Desai</u>

- Feebly interacting massive particles (FIMPs), coupling \rightarrow LLPs
- Models, current displaced lepton searches focused on e/µ
- Possible and important to extent coverage to 3rd generation

Signature Based Searches

LHC LLP White Paper Jared Evans

- Useful to factorise LLP production from decays
- Several simple, well-motivated LLP decays to τs

Normal Decays

- $X^0 \rightarrow \tau^+ \tau^-$
- $X^0 \rightarrow \tau^{\pm} W^{\mp(*)}$
- $X \rightarrow \tau^{\pm} q(\bar{q})$

- Odd Decays
- $X^0 \rightarrow \tau^{\pm} \ell^-$
- $X^{\pm} \rightarrow \tau^{\pm} Z/h$
- $X^{\pm\pm} \rightarrow \tau^{\pm} \tau^{\pm} (/\ell^{\pm})$

Easy to get 100% BR Simple models High motivation

Hard to get 100% BR Complicated models Pretty ad hoc

- Construct benchmark models from these signatures
- Current LHC searches have limited sensitivity to many of these

Experimental Challenges

- Tau reconstruction and identification for the prompt hadronic taus
 - Challenging as they look like jets
- ML-based algs. trained on prompt Z/y

Experimental Challenges

- Taus from LLPs
 - Displaced jets
- Track Reconstruction d₀ requirement needed
- Tracks not suitable for large decay radius
 - approach: to use Large Radius Tracking (LRT)

	Standard	Large radius
Maximum d_0 (mm)	10	300
Maximum z_0 (mm)	250	1500
Maximum $ \eta $	2.7	5
Maximum shared silicon modules	1	2
Minimum unshared silicon hits	6	5
Minimum silicon hits	7	7
Seed extension	Combinatorial	Sequential

- ID for displaced T decays to hadrons
 - ML-based algs. trained on prompt Z/γ; characterize performance for displaced τs

Summary and Outlook

- Several models predict LLPs that favour decays to the 3rd generation
- Benchmarks established; model-independent methods explored
- Third generation LLP sensitivity requires new solutions in
 - --Trigger --Tracking --Tau ID
- Trigger and ID algs. designed for prompt ts
 - thoroughly characterised performance for displaced TS
- Working on:
 - Trigger studies and re-optimizing existing, online τ ID for Run3
 - Re-optimizing and improving offline tau ID for implantation in Run2 analysis
 - New samples available with LRT: re-train τ ID
 - Developing analysis framework in parallel

Simulation task

- Detector simulation consumes most CPU
 - Many ongoing efforts to provide GPU accelerated particle transport
- Focus on electromagnetic calorimeter
 - computationally dominant part of Geant4 simulation
 - Relatively tractable number of processes
- ATLAS Electro-Magnetic End Cap (EMEC) calorimeter has a novel and complex structure
 - Not derived from standard Geant4 geometry shapes
 - Accordian shape for the absorbers and electrodes
 - · Called "custom solid"
 - Makes it difficult to port the code to new advancements
 - Trying to rebuild the structure from G4 shapes

ATLAS 2018 CPU Report

