DEEP UNDERGROUND NEUTRINO EXPERIMENT

Miquel Nebot-Guinot

Deep Underground Neutrino Experiment

- 1300 km baseline.
- Neutrino source (PIP-II / LBNF)
- Near detector complex, LAr component.
- Large (70 kt) LArTPC far detector 1.5 km underground.

- Observe $\nu_{\mu}/\bar{\nu_{\mu}}$ disappearance and $\nu_{e}/\bar{\nu_{e}}$ appearance to measure:
 - Neutrino mixing parameters (θ_{23} , $\theta_{13})$
 - CP-violation (δ_{CP})
 - Ordering of ν masses.
- Supernova burst neutrinos.
- BSM processes (baryon number violation, NSI, etc.)

1157 collaborators from 197 institutions in 33 countries (CERN)

Far Detector

- 40-kt (fiducial) liquid argon TPC at 4850L of SURF with integrated photon detection.
- Four 17kt (~10-kt fiducial) modules LArTPCs installed (on-axis)
- 1475 meters underground at the Sanford Underground Research Facility in Lead, South Dakota.
- Modules will not be identical.

protoDUNEs @

• Prototype technology for charged test beam at CERN's neutrino platform.

THE UNIVERSITY of EDINBURGH

Physics program

- LBL oscillation analysis (including CP-violation and mass ordering):
 - •Three-flavor long-baseline neutrino oscillation
 - •Precise measurement of all parameters governing longbaseline oscillation in a single experiment:

$$heta_{23}$$
 , $heta_{13}$, Δm^2_{32} , δ_{CP}

- ·Definitive measurement of neutrino mass ordering
- -Discovery potential for CP violation for wide range of δ_{CP} values
- -Significant potential for determination of θ_{23} octant
- Supernova Neutrino Burst and solar neutrinos:
 - -Large sample of neutrinos for SNB in our galaxy (especially ν_{e})
 - •Measure flavor content, spectra, time evolution of SNB neutrinos
 - •Quantitative measurements of SNB evolution, particle physics parameters
 - •Early detection and pointing for multi-messenger astrophysics
- BSM program:

•Baryon number violating processes, sterile neutrinos, non-unitarity of PMNS matrix, non-standard interactions, CPT violation, neutrino trident production, dark matter detection,

2

3 4 5 6 7 Reconstructed Energy (GeV)

CPV Sensitivity Over Time

DUNE-EDI: DAQ

•Readout:

-TPC channels sampled/digitized at ~2MHz: complete data volume sent to DAQ (~1.5 TB/s)

-Photon detectors sampled at 62.5 MHz: when signal above threshold is detected a waveform of few µs is sent to DAQ (expected ~50-100 GB/s)

•Max storage:

-All of DUNE FD has a budget of 30 PB/y: the DAQ thus needs to reduce data by $>10^4$

DUNE-EDI: DAQ

- Detector readout simulation including realistic waveforms and noise
- Automated reconstruction: signal processing and hit finding, clustering algorithms, energy reconstruction

DUNE-EDI: Computing

- Computing Resources
- Data management
- Data model-computing model
- Metadata

DUNE-EDI: expanding LArTPC activities

New involvement in microBooNE and SBND

Thanks!

LBL oscillation analysis

CP Violation Sensitivity (True NO)

- CP violation discovery potential over wide range of true δ_{CP} values.
- CP violation discovery for 50% of true δ_{CP} values in ~10 years.

CPV Sensitivity Over Time

Mass Ordering Sensitivity (True NO) • **DUNE Sensitivity** vears (staged) All Systematics 10 years (staged 35-Normal Ordering $\sin^2 2\theta_{12} = 0.088 \pm 0.003$ 1a: Variations of statistics, systematics $0.4 < \sin^2 \theta_{23} < 0.6$ 30 and oscillation parameter 25 ି<u>ଧ</u>୍ୱ 20 15 10 0

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

 δ_{CP}/π

- Definitive determination of neutrino mass ordering for all possible parameters.
- δ_{CP} precision of 10°-20° in ~10 years (staged) θ_{13} measurement comparable with reactor experiments after ~15 years (staged)

Precision δ_{CP} Measurement

