

Thank You

Amin Doostmohammadi

Guanming Zhang

Romain Mueller

Rian Hughes James Graham Mehrana Nejad Thuan Ben Saw Benoit Ladoux Lakshmi Balasubramaniam

Confluent cell layers

- 1. What sort of questions are we trying to answer?
- 2. Models
- 3. The phase field model for confluent cell layers
- a. Passive forces
- b. Active forces, single cells, polar contractile dipolar
- c. Active forces, confluent layers, extensile dipolar

Stress-isotropic

-80-60-40-20 0 20 4

x (µm)

80-60-

40-20-

0-

-20-

-40--60--80Stress-isotropic

Can we model cell layers as active nematics?

velocity fields reminiscent of active turbulence

topological defects in human bronchial epithelial cells Blanch-Mercader et al PRL 2018

shear flow in confined channels (Duclos et al Nat Phys 2018)

Can we model cell layers as active nematics?

velocity fields reminiscent of active turbulence

Why can isotropic cells give nematic behaviour?

topological defects in human bronchial epithelial cells Blanch-Mercader et al PRL 2018

shear flow in confined channels (Duclos et al Nat Phys 2018)

Drosophila egg chamber: active turbulence vs flocking

From Sally Horne-Badovinac's lab: Cetera et al. Nature Comms. 5, 5511 (2014)

Malinverno et al Nature Materials 16 (2017)

Flocking or active turbulence?

polar force

If there are dipolar forces are they extensile or contractile?

Questions:

Why do circular cells give active turbulence?

Flocking or active turbulence?

Polar or dipolar driving?

Extensile or contractile dipolar driving?

Alert & Trepat, Annual Review of Condensed Matter Physics 2020

Voronoi models

associate energy with areas and perimeters of the cells

$$\mathcal{F} = \sum_{a=1}^{N} \left[\frac{\kappa}{2} (A_a - A_0)^2 + \frac{\Gamma}{2} (P_a - P_0)^2 \right]$$

add self propulsion by a polar force acting on cell centres of cell vertices

- 1. What sort of questions are we trying to answer?
- 2. Models
- 3. The phase field model for confluent cell layers
- a. Passive forces
- b. Active forces, single cells, polar contractile dipolar
- c. Active forces, confluent layers, extensile dipolar

Stress-isotropic

-80-60-40-20 0 20 4

x (µm)

80-60-

40-20-

0-

-20-

-40--60--80Stress-isotropic

Phase field model

frame index: 30

Grant, Aranson

Equations of motion

 \dot{i}

$$\partial_t \varphi_i + \mathbf{v}_i \cdot \nabla \varphi_i = -\frac{\delta \mathcal{F}}{\delta \varphi_i}$$

 $\xi \mathbf{v}_i(\mathbf{x}_i) = \mathbf{f}_i^{\text{tot}}(\mathbf{x}_i)$

passive forces + active forces

Cahn-Hilliard term: fixes φ_i to 1 inside a cell and 0 outside and imposes a surface tension

$$\mathcal{F}_{CH} = \sum_{i} \frac{\gamma}{\lambda} \int d\mathbf{x} \left\{ 4\varphi_i^2 (1 - \varphi_i)^2 + \lambda^2 (\nabla \varphi_i)^2 \right\}$$

soft constraint on the area

$$\mathcal{F}_{\text{area}} = \sum_{i} \mu \left\{ 1 - \frac{1}{\pi R^2} \int d\mathbf{x} \, \varphi_i^2 \right\}^2$$

Passive forces: relax to minimise free energy

penalises overlap between cells

$$\mathcal{F}_{\text{rep}} = \sum_{i} \sum_{j \neq i} \frac{\kappa}{\lambda} \int d\mathbf{x} \; \varphi_i^2 \varphi_j^2$$

favours cell-cell adhesion

$$\mathcal{F}_{adh} = \sum_{i} \sum_{j \neq i} \omega \lambda \int d\mathbf{x} \, \nabla \varphi_i \cdot \nabla \varphi_j$$

Passive forces: relax to minimise free energy

$$\mathbf{f}_{i}^{passive}(\mathbf{x}) = \frac{\delta \mathcal{F}}{\delta \varphi_{i}} \nabla \varphi_{i}$$

Equilibrium is identical hexagons, but the system can get stuck In a jammed state.

Active polar force (Stokeslet)

1. Extension

2. Adhesion

3. Translocation

4. De-adhesion

Ladoux and Nicholas Rep Prog Phys 2012

polar force pulling the cell along Polar force

 $\mathbf{f}_i^{\text{pol}}(\mathbf{x}) = \alpha \varphi_i(\mathbf{x}) \mathbf{p}_i$

polarisation of cell i

Choice of polarisation?

- 1. Gaussian noise
- 2. Aligns with velocity of cell (+noise)
- 3. Aligns with long axis of cell (+noise)
- 4. Aligns and is proportional to the elongation of the cell (+noise)

Polar force

 $\mathbf{f}_i^{\text{pol}}(\mathbf{x}) = \alpha \varphi_i(\mathbf{x}) \mathbf{p}_i$

Choice of polarisation?

1. Gaussian noise

alignment time ~ time to move a cell diameter

- 2. Aligns with velocity of cell (+noise)
- 3. Aligns with long axis of cell (+noise)
- 4. Aligns and is proportional to the elongation of the cell (+noise)

Polar force

 $\mathbf{f}_i^{\text{pol}}(\mathbf{x}) = \alpha \varphi_i(\mathbf{x}) \mathbf{p}_i$

Choice of polarisation?

So far we have found little difference except that 2 gives flocking.

- 1. Gaussian noise
- 2. Aligns with velocity of cell (+noise)
- 3. Aligns with long axis of cell (+noise)
- 4. Aligns and is proportional to the elongation of the cell (+noise)

Phase diagram

strength of dipolar force

strength of polar force

unjamming

jammed state

liquid

centre of mass trajectories of the cells

rearrangement rate of cells against strength of polar force

Flocking: polar force aligns to velocity

Contractile (intra-cellular) dipolar force

contractile dipolar force restoring the cell to circular

polar force pulling the cell along polarity tensor ${\cal P}_i = ec{p}_i^{
m T}ec{p}_i - rac{\mathbb{I}}{2}ec{p}_i^2$

dipolar stress

$$\sigma_D = -\zeta \sum_i \varphi_i(\mathbf{x}) \mathcal{P}_i$$

$$\mathbf{f}(\mathbf{x})^{\,\mathsf{dipolar}} =
abla \cdot \sigma_D$$

dipu

Contact inhibition of locomotion (Abercrombie, 1953)

If two cells come into contact they tend to move away from each other

cells prefer to move into free space colony expansion / wound healing

Cells within a colony are much less likely to form lamellopodia

Strength of the polarization decreases with increasing cell-cell overlap

Fig from Int. J. Dev. Biol. 62: 5-13 (2018)

But can also have dipolar forces due to cell-cell junctions: these are probably extensile

(a) extensile

But can also have dipolar forces due to cell-cell junctions: these are probably extensile

dipolar force

$$\mathbf{f}(\mathbf{x})^{\text{dipolar}} = \nabla \cdot \sigma_D$$

Increasing the magnitude of the extensile dipolar forces – no polar driving

frame index: 30

frame index: 30

Phase diagram

strength of extensile dipolar force

strength of polar force

Malinverno et al Nature Materials 16 (2017)

RAB5A ⇔ turning off intercellular interactions

unjamming

rearrangement rate: average number of cells that change neighbours at each time step

Why can circular cells show topological defects

extensile

contractile

extensile cell-cell interactions => nematic ordering => active turbulence

(NB cf shear flows in continuum active nematics)

Nematic field

Vorticity

Active turbulence

Round up of forces

Passive: distinguishes different cells, determines their size adhesion

Active single cell forces

contractile dipolar force (stresslet) restoring the cell to circular

polar force pulling the cell along

Active forces due to cell junctions (probably) extensile dipole

(a) extensile

Why are the defects extensile?

Average velocity field

Nature Materials, in press bioRxiv 2020.10.28.358663

Questions:

Why do circular cells give active turbulence? Extensile inter-cellular interactions

Flocking or active turbulence? Polar or dipolar driving? Contact inhibition of locomotion activated or not

Extensile or contractile dipolar driving? Extensile wins for strong cell-cell junctions

