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2.   Models
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driven by the intrinsic activity, in the absence of an ordering
free energy which found that the correlation length increases
(decreases) with decreasing (increasing) activity.50 However,
here the variation of the cell concentration due to division
events introduces new dynamics to the system and any analogy
must be treated with caution.

Another important consequence of cell division is in changing
the number density of topological defects, which may be impor-
tant in controlling the structure of cell layers. Recent experiments
on fibroblasts cells have shown that the nematic order of the cells
is accompanied by formation of topological defects, which pre-
vent the development of infinite size nematic domains.51 In the
simulations, the number density of topological defects increases
with increase in cell division in a system with no intrinsic activity
(z = 0). However, the cell division has a different effect when it is
associated with systems having intrinsic extensile or contractile
activities. While the generation of topological defects is enhanced
by cell division in extensile systems (Fig. 3(g) and (h)), it is
significantly reduced in contractile assemblies (Fig. 3(e) and (f)).
This again can be explained by the division reducing (increasing)
the effective activity of contractile (extensile) active nematics in
accord with recent studies showing that the number of defects
increases with increase in the activity of the system.52 Taking the
effects of cell division, a decrease (increase) in the number of
defects for contractile (extensile) systems is observed since effec-
tive activity is reduced (increased). Less topological defects implies
less stress in the tissue, which might have important physiological
implications.

5 Cell division and the free surface
Up to now, we have considered division effects on the dynamics
of cell assemblies in periodic domains. In many physiological
applications such as morphogenesis, tissue expansion, and wound
healing, the mechanical response of a free surface to the cell
invasion is of considerable importance.2–4,7 Here, using the equa-
tions of lyotropic active nematics, we extend our results to the case
where a cell assembly is separated from an otherwise isotropic
liquid by a free interface. To distinguish the cell culture from the
isotropic fluid, we define a scalar order parameter f, which
measures the relative density of each component with f = 1 for
the cells and f = 0 for the isotropic fluid and evolves according
to the Cahn–Hilliard equation53

qtf + qi(uif) = Gfr2m + af, (14)

where Gf is the mobility, m = d/df is the chemical potential and
the free energy of the system is

F ¼ Af
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where Af and kf are material constants. Eqn (14) together with
eqn (1)–(3) are solved here to describe the dynamics of a
dividing colony of cells with free surfaces. An additional term

Pij = (F # mf)dij # qif(qF/q(qjf)) must be added to the stress
components in eqn (3), when the variable f is introduced.
More details of the form of the free energy and the governing
equations of lyotropic active nematics can be found in.33 We
use Gf = 0.1, Af = 0.08 and kf = 0.01. We do not explicitly
include any terms in the free energy that lead to interface
anchoring,54 but active anchoring may result from hydrodynamic
stresses at the interface.33

In Fig. 4(a), numerical results for the time evolution of the
surface of a cellular layer are compared to the results of
experiments on the growth of the surface in a colony of dividing
MDCK cells. Unlike the experiments, we consider cells with no
intrinsic activity (z = 0) in the simulation to show that a similar
behaviour follows from considering the division-induced acti-
vity alone. Previous studies have predicted that existence of
source terms such as material production can drive hydro-
dynamic instabilities in the form of undulations at the interface
between a viscous fluid and viscoelastic material.55 As evident
from Fig. 4(a), the expansion of the band is accompanied by
instabilities that lead to the formation of fingers at the surface
in both experiment and simulation. Although previous studies
have associated the fingering instabilities to the formation of
leader cells at the border,35 our results suggest that the same

Fig. 4 (a) Temporal evolution of a free surface of MDCK cells and emer-
gence of the fingering instability in experiments (left) and the same phenom-
ena observed in our simulations by division-induced activity (right). In the
simulations, colormaps show the concentration. The time step in experi-
ments is 150 min and in the simulation it is 120 in simulation units. (b and c)
A close-up of the velocity field in the band for experiment and simulation,
respectively.
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driven by the intrinsic activity, in the absence of an ordering
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events introduces new dynamics to the system and any analogy
must be treated with caution.

Another important consequence of cell division is in changing
the number density of topological defects, which may be impor-
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on fibroblasts cells have shown that the nematic order of the cells
is accompanied by formation of topological defects, which pre-
vent the development of infinite size nematic domains.51 In the
simulations, the number density of topological defects increases
with increase in cell division in a system with no intrinsic activity
(z = 0). However, the cell division has a different effect when it is
associated with systems having intrinsic extensile or contractile
activities. While the generation of topological defects is enhanced
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accord with recent studies showing that the number of defects
increases with increase in the activity of the system.52 Taking the
effects of cell division, a decrease (increase) in the number of
defects for contractile (extensile) systems is observed since effec-
tive activity is reduced (increased). Less topological defects implies
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implications.

5 Cell division and the free surface
Up to now, we have considered division effects on the dynamics
of cell assemblies in periodic domains. In many physiological
applications such as morphogenesis, tissue expansion, and wound
healing, the mechanical response of a free surface to the cell
invasion is of considerable importance.2–4,7 Here, using the equa-
tions of lyotropic active nematics, we extend our results to the case
where a cell assembly is separated from an otherwise isotropic
liquid by a free interface. To distinguish the cell culture from the
isotropic fluid, we define a scalar order parameter f, which
measures the relative density of each component with f = 1 for
the cells and f = 0 for the isotropic fluid and evolves according
to the Cahn–Hilliard equation53
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where Af and kf are material constants. Eqn (14) together with
eqn (1)–(3) are solved here to describe the dynamics of a
dividing colony of cells with free surfaces. An additional term

Pij = (F # mf)dij # qif(qF/q(qjf)) must be added to the stress
components in eqn (3), when the variable f is introduced.
More details of the form of the free energy and the governing
equations of lyotropic active nematics can be found in.33 We
use Gf = 0.1, Af = 0.08 and kf = 0.01. We do not explicitly
include any terms in the free energy that lead to interface
anchoring,54 but active anchoring may result from hydrodynamic
stresses at the interface.33

In Fig. 4(a), numerical results for the time evolution of the
surface of a cellular layer are compared to the results of
experiments on the growth of the surface in a colony of dividing
MDCK cells. Unlike the experiments, we consider cells with no
intrinsic activity (z = 0) in the simulation to show that a similar
behaviour follows from considering the division-induced acti-
vity alone. Previous studies have predicted that existence of
source terms such as material production can drive hydro-
dynamic instabilities in the form of undulations at the interface
between a viscous fluid and viscoelastic material.55 As evident
from Fig. 4(a), the expansion of the band is accompanied by
instabilities that lead to the formation of fingers at the surface
in both experiment and simulation. Although previous studies
have associated the fingering instabilities to the formation of
leader cells at the border,35 our results suggest that the same

Fig. 4 (a) Temporal evolution of a free surface of MDCK cells and emer-
gence of the fingering instability in experiments (left) and the same phenom-
ena observed in our simulations by division-induced activity (right). In the
simulations, colormaps show the concentration. The time step in experi-
ments is 150 min and in the simulation it is 120 in simulation units. (b and c)
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Why can isotropic cells
give nematic behaviour?



From Sally Horne-Badovinac’s lab:
Cetera et al. Nature Comms. 5, 5511 (2014)

Drosophila egg chamber: active turbulence vs flocking

During development, tissue morphogenesis requires precise
coordination of individual cell behaviours and reciprocal
interactions between cells and their extracellular matrix.

The Drosophila egg chamber provides a highly amenable system
to identify molecular mechanisms underlying changes in tissue
and organ shape1. Egg chambers are multicellular structures
within the fly ovary that will each give rise to a single egg. They
are composed of a germ cell cluster surrounded by an epithelial
layer of follicle cells. The basal surface of the epithelium is in
contact with a basement membrane extracellular matrix, which
encapsulates the egg chamber (Fig. 1a,b). Egg chambers are
assembled in an anterior ovarian region known as the germarium
and are then organized into a developmental array called an
ovariole (Fig. 1a). Each egg chamber progresses through 14
developmental stages before forming an egg.

Although initially spherical, egg chambers lengthen along
their anterior–posterior axes as they mature (Fig. 1a)2–4. This
morphogenesis begins at stage five and depends on a precise
organization of the basal epithelial surface, in which parallel
arrays of actin bundles within the cells and fibril-like structures in
the adjacent basement membrane align perpendicular to the
elongation axis (Fig. 1c)5,6. This circumferential arrangement of
structural molecules is thought to act as a ‘molecular corset’ that
directionally biases egg chamber growth towards the poles, as
mutations that disrupt this pattern lead to the production of
round rather than elongated eggs6–12. Elongation also depends on
an intriguing collective cellular motion, in which the entire egg
chamber rotates perpendicular to the anterior–posterior axis
within its surrounding basement membrane (Fig. 1d)10.

The discovery that egg chamber elongation depends on
rotation has led to two major challenges in understanding this
system. The first is to determine the mechanisms underlying
individual follicle cell motility. The second is to determine the
relationship between the rotational motion and the morphogen-
esis itself. There is compelling evidence that rotation builds the
polarized basement membrane associated with the molecular
corset10. However, the relationship between rotation and the
actin-based component of the corset, the basal actin bundles,
remains unknown.

The tissue-level organization of the basal actin bundles has
been reported to fluctuate during the early stages of egg chamber

development. The actin bundles first show a circumferential
arrangement within the follicle cell precursors in the germarium9.
However, this early tissue-level organization was reported to be
lost on egg chamber formation, such that the basal actin bundles
were still aligned within individual cells, but their global
orientation was perturbed. The tissue-level alignment of the
basal actin bundles was then thought to re-emerge at stage five,
concurrent with the time that rotation and basement membrane
polarization were reported to begin9,10. Recent work has shown
that when rotation ends at stage nine, the actin bundles undergo
oscillating, Myosin II-mediated contractions to produce a
circumferentially constrictive force around the egg chamber to
further elongate the tissue13.

Here we show that egg chamber rotation is driven by
lamellipodial protrusions at each follicle cell’s leading edge. We
further show that rotation begins much earlier than previously
reported, and that this motion is required for the tissue-level
alignment of the basal actin bundles. By blocking rotation at
discrete time points and employing a new quantitative method to
characterize actin organization, we find that the actin-based
component of the molecular corset is built in three steps. Global
actin bundle alignment is first established among the follicle cell
precursors in the germarium9. Contrary to previous reports,
however, the tissue-level actin pattern is maintained by egg
chamber rotation during stages one through five. Starting at stage
six, rotation becomes dispensable for tissue-level actin bundle
alignment. This change coincides with basement membrane
polarization, which suggests that interactions between the basal
actin bundles and the fibrillar matrix may stabilize the corset
pattern. This work sheds light on the cellular mechanisms that
drive egg chamber rotation and demonstrates how collective
cell migration can be harnessed to build a tissue-level actin
organization required for organ morphogenesis.

Results
Follicle cells have leading edge filopodia and lamellipodia. To
elucidate the cellular mechanisms underlying egg chamber rota-
tion, we first investigated the composition of the actin cytoske-
leton at the basal surface of the follicular epithelium. In addition
to the parallel arrays of actin bundles, previous reports have

Egg chamber rotation

Stage 1
Stage 7

Germarium

Stage 6
Stage 4

Basal
actin
ECM

Follicle cells

Apical

Basal

Molecular corset

Actin Col IV 

Stage 9

Figure 1 | Overview of key concepts in egg chamber elongation. (a) Illustration of an ovariole, a developmental array of egg chambers. Egg chambers
are spherical when they bud from the germarium and then lengthen along their anterior–posterior axes as they develop. (b) Blowup of the boxed region in a
highlighting the apical–basal axis of the follicle cell epithelium. (c) The ‘molecular corset’ consists of parallel arrays of actin bundles at the basal
epithelial surface (stage nine) and fibril-like structures in the adjacent basement membrane (stage seven). Laser-scanning confocal images. Scale bar,
10mm. (d) Transverse section through a stage seven egg chamber, as shown by the dashed line in a. The egg chamber rotates within the surrounding
basement membrane (illustration adapted from ref. 32).
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Figure 1 | RAB5A promotes coherent, ballistic motion of jammed epithelia. a, Left: snapshots of the velocity field obtained from PIV analysis of
doxycycline-treated control (Ctrl) and RAB5A-MCF-10A cells seeded at jamming density and monitored by time-lapse microscopy (Supplementary
Movie 2). The red arrow in each inset is the mean velocity v0 (average over the entire field of view). The colour map reflects the alignment with respect to
the mean velocity, quantified by the parameter a(x)= (v(x) ·v0)/(|v(x)||v0|). The local velocity is parallel (a=+1) or antiparallel (a=�1) to the mean
direction of migration. Right: root mean square velocity vr.m.s. (representative of >10 independent experiments). Vertical lines indicate the time interval
used for the analysis of motility parameters. b, Left plots: migration paths of control and RAB5A-MCF-10A cells (Supplementary Movie 6) seeded sparsely
to monitor individual cell motility and analysed using the Chemotaxis Tool ImageJ software plugin. Right plots: velocity and persistence of the locomotion
of cells. Data are the mean ± s.d. (n=40 single cells/experiment/genotype of three independent experiments); NS, not significant. c, Snapshots depicting
the angular velocity of control and RAB5A-MCF-10A cells seeded at jamming density and monitored by time-lapse microscopy (Supplementary Movie 7).
Angular velocity vectors are calculated by CIV analysis. The colour code indicates the direction of migration. Homogeneous and inhomogeneous scattered
colours indicate regions with high and low migration coherence, respectively. Scale bar, 100 µm. Representative images from n=5 time-lapse series.
d–f, PIV analysis of motion of doxycycline-treated control and RAB5A-MCF-10A cells seeded at jamming density (Supplementary Movie 2). In e, vertical
lines indicate the time interval used for the analysis of motility parameters. d, Left: velocity correlation functions CVV evaluated in the time window
comprised between 4 and 12 h during which the availability of EGF allows migration. The continuous lines are best fits of CVV with a stretched exponential
function. Right: correlation lengths Lcorr (five movies/experimental condition out of three to eight independent experiments). e, Order parameter  as a
function of time.  = 1 means a perfectly uniform velocity field.  ⇠=0 indicates randomly oriented velocities. f, Left: mean square displacements (MSD)
obtained by numerical integration of the velocity maps. Right: persistence length Lpers obtained by fitting the MSD curves with a model function
(continuous lines) describing the transition from a short-time ballistic to a long-time di�usive behaviour.

mammary epithelial MCF-10A cells (Supplementary Fig. 1a).
These cells form polarized monolayers and, upon reaching
confluence, display a typical collective locomotion mode
characterized by the emergence of large-scale, coordinated
motility streams, involving tens of cells. As cells keep on dividing,
density increases, causing a near complete kinetic arrest akin
to a jamming or rigidity transition5,16 (Supplementary Fig. 1b
and Supplementary Movie 1). Unexpectedly, under these latter
conditions, elevation of RAB5A-reawakened motility of kinetically

arrested monolayer by promoting large and heterogeneous
multicellular streams (Fig. 1a and Supplementary Movies 2 and
3). RAB5A expression had marginal e�ects on the rate of cell
division of confluent monolayers (Supplementary Fig. 1c), and
collective motility was unperturbed by inhibition of cell division
(Supplementary Fig. 1d and Supplementary Movie 4). Large-scale,
collective locomotion was also induced by expression of RAB5A
in jammed keratinocyte monolayers (Supplementary Fig. 1e
and Supplementary Movie 5) and oncogenically transformed
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doxycycline-treated control (Ctrl) and RAB5A-MCF-10A cells seeded at jamming density and monitored by time-lapse microscopy (Supplementary
Movie 2). The red arrow in each inset is the mean velocity v0 (average over the entire field of view). The colour map reflects the alignment with respect to
the mean velocity, quantified by the parameter a(x)= (v(x) ·v0)/(|v(x)||v0|). The local velocity is parallel (a=+1) or antiparallel (a=�1) to the mean
direction of migration. Right: root mean square velocity vr.m.s. (representative of >10 independent experiments). Vertical lines indicate the time interval
used for the analysis of motility parameters. b, Left plots: migration paths of control and RAB5A-MCF-10A cells (Supplementary Movie 6) seeded sparsely
to monitor individual cell motility and analysed using the Chemotaxis Tool ImageJ software plugin. Right plots: velocity and persistence of the locomotion
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comprised between 4 and 12 h during which the availability of EGF allows migration. The continuous lines are best fits of CVV with a stretched exponential
function. Right: correlation lengths Lcorr (five movies/experimental condition out of three to eight independent experiments). e, Order parameter  as a
function of time.  = 1 means a perfectly uniform velocity field.  ⇠=0 indicates randomly oriented velocities. f, Left: mean square displacements (MSD)
obtained by numerical integration of the velocity maps. Right: persistence length Lpers obtained by fitting the MSD curves with a model function
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mammary epithelial MCF-10A cells (Supplementary Fig. 1a).
These cells form polarized monolayers and, upon reaching
confluence, display a typical collective locomotion mode
characterized by the emergence of large-scale, coordinated
motility streams, involving tens of cells. As cells keep on dividing,
density increases, causing a near complete kinetic arrest akin
to a jamming or rigidity transition5,16 (Supplementary Fig. 1b
and Supplementary Movie 1). Unexpectedly, under these latter
conditions, elevation of RAB5A-reawakened motility of kinetically

arrested monolayer by promoting large and heterogeneous
multicellular streams (Fig. 1a and Supplementary Movies 2 and
3). RAB5A expression had marginal e�ects on the rate of cell
division of confluent monolayers (Supplementary Fig. 1c), and
collective motility was unperturbed by inhibition of cell division
(Supplementary Fig. 1d and Supplementary Movie 4). Large-scale,
collective locomotion was also induced by expression of RAB5A
in jammed keratinocyte monolayers (Supplementary Fig. 1e
and Supplementary Movie 5) and oncogenically transformed
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Flocking or active turbulence?

polar force                   or                             dipolar force



If there are dipolar forces are they extensile or contractile?

Polar force

Dipolar force

extensile

contractile



Questions:

Why do circular cells give active turbulence?

Flocking or active turbulence?

Polar or dipolar driving?

Extensile or contractile dipolar driving?



continuum models: 
active nematic /polar
active gels

particle models
Vicsek model
cellular Potts model
particles + Voronoi

Vertex + Voronoi models

Phase field models
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Figure 5
Active network models. (a) Cell centers at positions {r⃗} are connected by the Delaunay triangulation (black).
Its dual is the Voronoi tessellation (red ) that defines cell boundaries and vertices at positions {⃗h}. (b) Cells are
parameterized by an area Ai and a perimeter Pi, and experience a self-propulsion force Ta p⃗i (orange) and an
interaction force F⃗ int

i = −∇⃗r⃗iF (dotted black arrow), which give the resultant force (black arrow). (c) Polarity–
velocity alignment with a timescale τ . (d ) Schematic phase diagram of the fluid–solid transition in the SPV
model in terms of the shape index p0 = P0/

√
A0, and the self-propulsion speed v0 = Ta/ξ and persistence

D−1
r . (e) Schematic phase diagram of the SPV model with polarity–velocity alignment at rate J = τ−1 (see

panel c). Panels a and d adapted from Reference 105; panels b and c adapted from Reference 106 with
permission from The Royal Society of Chemistry; and panel e adapted from Reference 107 with permission
from Springer Nature. Abbreviation: SPV, self-propelled Voronoi.

(77, 110–113) and self-propelled Voronoi (SPV) models (105, 114), respectively. Thus, the corre-
sponding degrees of freedom i = 1, . . . , nmove according to Equation 5, albeit with F⃗ int

i = −∇⃗r⃗iF
(Figure 5b). In addition, to account for interfacial effects at tissue boundaries, Salm & Pismen
added a wetting force at the tissue edge (110), whereas Barton et al. included surface tension and
bending forces (68).

3.3.4. Polarity dynamics. The most popular orientational interaction in SPV models has
been polarity–velocity alignment (68, 106, 114–116) (Figure 5c and Section 2.4.1). However,
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associate energy with areas and
perimeters of the cells

add self propulsion by a polar force
acting on cell centres of cell vertices
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provides physical dynamics, thus going beyond the energy minimization process of the CPM,
which imposes static mechanical equilibrium at each step. Furthermore, the phase-field model
is currently better connected to tissue mechanics (Equation 6), and it can explicitly account for
cell–cell and cell–substrate friction as well as for active stresses (Equations 5–7) (69, 100).

3.3. Active Network Models
With precedents in the physics of foams (102), network models describe epithelial tissues as net-
works of polygonal cells (103). Thus, albeit in less detail than lattice and phase-field models, these
models still describe subcellular features of cell shape. They encompass two subtypes of models:
vertex and Voronoi models.

3.3.1. Vertex and Voronoi models. In vertex models, the degrees of freedom are the vertices of
the polygons. Alternatively, the network can be described by the cell centers, and this reduces the
number of degrees of freedom. These descriptions are known as Voronoi models because, given
the positions of the cell centers, the cell–cell boundaries are delineated by the Voronoi tessellation
(Figure 5a). The difference in the number of degrees of freedom has important consequences for
themechanical properties of the network,whichmay thus differ between vertex andVoronoimod-
els (104). Furthermore, cell motion, as well as cell division and cell death, may entail topological
rearrangements of the network of cell–cell interfaces. In Voronoi models, the network is dynamic,
evolving with each recomputation of the tessellation. In vertex models, by contrast, network re-
arrangements entail the appearance and disappearance of vertices, which requires implementing
specific rules.

3.3.2. Energy function. In both descriptions, as in the previous approaches, cellular properties
and interactions are encoded in an energy function, usually parameterized in terms of the areas
Aa and perimeters Pa of cells a = 1, . . . ,N :

F =
N∑

a=1

[
κ

2
(Aa − A0)2 + "Pa + #

2
P2
a

]
. 8.

Here, κ is the modulus of cell area around its preferred value A0 (Section 2.2.3). Respectively,
" = γc − w/2 is the line tension of the cell–cell interfaces that connect the vertices, which results
from the coaction of the cortical tension along cell–cell contacts, γc, and the cell–cell adhesion
energy w (Sections 2.2.1 and 2.2.4) (108, 109). When cell–cell adhesion dominates, the line ten-
sion " becomes negative and the cell–cell interface tends to expand. This expansion is eventually
saturated by other cellular processes. This saturation is encoded in the third term of Equation 8,
which gives rise to a perimeter-dependent line tension. This term is a key difference between
models of tissues and foams; for the latter, " is always positive and the quadratic perimeter term
is absent (102). The two perimeter contributions in Equation 8 can be recasted as an energetic
penalty for departures from a preferred perimeter P0 = −"/#:

F =
N∑

a=1

[
κ

2
(Aa − A0)2 + #

2
(Pa − P0)2

]
. 9.

3.3.3. Cell migration and force balance. Cell motility can be implemented by applying ac-
tive polar forces on either the vertices or the cell centers, giving rise to active vertex models

88 Alert •Trepat
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Figure 5
Active network models. (a) Cell centers at positions {r⃗} are connected by the Delaunay triangulation (black).
Its dual is the Voronoi tessellation (red ) that defines cell boundaries and vertices at positions {⃗h}. (b) Cells are
parameterized by an area Ai and a perimeter Pi, and experience a self-propulsion force Ta p⃗i (orange) and an
interaction force F⃗ int

i = −∇⃗r⃗iF (dotted black arrow), which give the resultant force (black arrow). (c) Polarity–
velocity alignment with a timescale τ . (d ) Schematic phase diagram of the fluid–solid transition in the SPV
model in terms of the shape index p0 = P0/

√
A0, and the self-propulsion speed v0 = Ta/ξ and persistence

D−1
r . (e) Schematic phase diagram of the SPV model with polarity–velocity alignment at rate J = τ−1 (see

panel c). Panels a and d adapted from Reference 105; panels b and c adapted from Reference 106 with
permission from The Royal Society of Chemistry; and panel e adapted from Reference 107 with permission
from Springer Nature. Abbreviation: SPV, self-propelled Voronoi.

(77, 110–113) and self-propelled Voronoi (SPV) models (105, 114), respectively. Thus, the corre-
sponding degrees of freedom i = 1, . . . , nmove according to Equation 5, albeit with F⃗ int

i = −∇⃗r⃗iF
(Figure 5b). In addition, to account for interfacial effects at tissue boundaries, Salm & Pismen
added a wetting force at the tissue edge (110), whereas Barton et al. included surface tension and
bending forces (68).

3.3.4. Polarity dynamics. The most popular orientational interaction in SPV models has
been polarity–velocity alignment (68, 106, 114–116) (Figure 5c and Section 2.4.1). However,
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Figure 5
Active network models. (a) Cell centers at positions {r⃗} are connected by the Delaunay triangulation (black).
Its dual is the Voronoi tessellation (red ) that defines cell boundaries and vertices at positions {⃗h}. (b) Cells are
parameterized by an area Ai and a perimeter Pi, and experience a self-propulsion force Ta p⃗i (orange) and an
interaction force F⃗ int

i = −∇⃗r⃗iF (dotted black arrow), which give the resultant force (black arrow). (c) Polarity–
velocity alignment with a timescale τ . (d ) Schematic phase diagram of the fluid–solid transition in the SPV
model in terms of the shape index p0 = P0/

√
A0, and the self-propulsion speed v0 = Ta/ξ and persistence

D−1
r . (e) Schematic phase diagram of the SPV model with polarity–velocity alignment at rate J = τ−1 (see

panel c). Panels a and d adapted from Reference 105; panels b and c adapted from Reference 106 with
permission from The Royal Society of Chemistry; and panel e adapted from Reference 107 with permission
from Springer Nature. Abbreviation: SPV, self-propelled Voronoi.

(77, 110–113) and self-propelled Voronoi (SPV) models (105, 114), respectively. Thus, the corre-
sponding degrees of freedom i = 1, . . . , nmove according to Equation 5, albeit with F⃗ int

i = −∇⃗r⃗iF
(Figure 5b). In addition, to account for interfacial effects at tissue boundaries, Salm & Pismen
added a wetting force at the tissue edge (110), whereas Barton et al. included surface tension and
bending forces (68).

3.3.4. Polarity dynamics. The most popular orientational interaction in SPV models has
been polarity–velocity alignment (68, 106, 114–116) (Figure 5c and Section 2.4.1). However,
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1. What sort of questions are we trying to answer?

2.   Models

3.   The phase field model for confluent cell layers

a. Passive forces

b. Active forces, single cells, polar
contractile dipolar

c.   Active forces, confluent layers, extensile dipolar

Fig. 3
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Polar and Apolar Contributions to Collective Cell Motility

1 Introduction

1.1 The phase field approach
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(4)

1.2 Defining cell shape

However, in general, the cells will be driven out
of equilibrium by active forces. We will need a
way to keep track of the shape of each cell. To do
this we calculate the traceless shape deformation
tensor of cell i

Di = �1

2

Z
dx

n
r'ir'

T
i
� Tr(r'ir'

T
i
)
o
.

(5)
1

Each cell is described by a phase field 
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Equations of motion

passive forces + active forces



Passive forces: relax to minimise free energy 
Polar and Apolar Contributions to Collective Cell Motility

1 Introduction

1.1 The phase field approach

FCH =
X
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Each point si on the boundary of cell i moves according to the equation of
motion

@t'i(si) + vi(si) ·r'i(si) = � �F
�'i(si)

(4)

where F = FCH + Farea + Frep is the total free energy of the cell layer. If
no forces are acting, the cell layer will relax to a minimum of the total free
energy. The global minimum is for the cells to be identical hexagons, but the
system can also become stuck in a glassy state.

1.2 Defining cell shape

However, in general, the cells will be driven out of equilibrium by active forces.
We will need a way to keep track of the shape of each cell. To do this we
calculate the traceless shape deformation tensor of cell i

Di = �1

2

Z
dx

�
r'ir'T

i
� Tr(r'ir'T

i
)
 
. (5)

The deformation tensor allows us to approximate the cell as an ellipse with
major and minor axes along its eigenvectors. It is related to the usual defini-
tion of the nematic Q-tensor

Qi = S(nin
T

i
� I/2) (6)

where ni is the normalised eigenvector of Di which corresponds to its largest
eigenvalue and S is half the di↵erence between its eigenvalues.

We define the cell polarization pi as a unit vector along the director ni,
with the direction of the vector chosen randomly. A nicer way of doing this
would be the direction between the cell and its centre of mass.

1

Cahn-Hilliard term: fixes            to 1 inside a cell and 0 outside 
and imposes a surface tension 
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1

soft constraint on the area
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We define the cell polarization pi as a unit vector along the director ni,
with the direction of the vector chosen randomly. A nicer way of doing this
would be the direction between the cell and its centre of mass.

1

penalises overlap between cells

for a single cell is reviewed in [?] [?] [?]. The algorithm has also been used to study the contact
inhibition of locomotion and collisions in binary cell systems [?, ?] and the e↵ect of the sti↵ness
mismatch between single cancer cells and normal cells in metastasis [?].

We consider a two-dimensional, confluent layer of cells. The extent of each cell i is defined by a
phase field 'i. Each phase field 'i(x) moves with velocity vi according to the equation of motion

@t'i(x) + vi(x) ·r'i(x) = �
�F

�'i(x)
(1)

where F is the total free energy of the cell layer.
We assume overdamped dynamics as cell Reynolds numbers are typically ⇠ 10�4. Therefore the

velocity of each point in cell in Eq. (??) is related to the forces acting on it by

⇠ vi(x) = ftoti (x) (2)

where ⇠ is a friction coe�cient.ftoti is the total force density exerted on cell i. There are three

contributions to the force acting on each cell(f toti = fpassivei + fnemi + fpoli ), a passive force related to
the free energy, an active polar force, and an active nematic force.

2.1 Passive force

Passive forces stem from the e↵ective free energy; if a cell deviates from equilibrium, the passive
thermodynamic force will drive it towards a lower free energy state [?]

fpassivei (x) =
�F

�'i
r'i.

F includes four terms, F = FCH + Farea + Frep + Fadh [?]:
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is a Cahn-Hilliard free energy that restricts 'i to take bulk values 1, which we choose to correspond
to the inside of the cell i, or 0, which denotes the region outside the cell. The cell boundary has
width O(�) because of the derivative term, and �/� is an energy scale.
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is a soft constraint, of strength µ, restricting the area of each cell to ⇡R2.
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penalises overlap between cells with an energy scale /�.
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Z
dx r'i ·r'j (6)
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dxr�i ·r�j measures the length of contact

line between two cells and !/� is an energy scale.
If no active forces or external forces are acting, the cell layer will relax to a minimum of the

total free energy. The global minimum is for the cells to be identical hexagons, but the system
can also become stuck in a glassy state. To model a self-propelled system, out of thermodynamic
equilibrium, we need to add active forcing.
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Equilibrium is identical hexagons, but the system can get stuck
In a jammed state.
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Figure 2. Schematic representation of the different steps of cell
migration on 2D substrates. 1. Polymerization of actin filaments at
the leading edge is translated into protrusive force. 2. Membrane
protrusion facilitates the binding of transmembrane cell surface
receptors to the substratum components. New adhesions are rapidly
linked to the network of actin filaments. 3. The combined activity of
retrograde actin movement and contractile forces produced by stress
fibers generates tension to pull the cell body forward. 4. The forces
produced by the contractile network combined with actin filament
and FA disassembly help to retract the trailing cell edge. Image
courtesy of the Mechanobiology Institute, National University of
Singapore.

rearrangement. On the other hand, the global organization of
the cytoskeleton also impacts the formation and disruption of
the adhesion sites. The integration of such coupled processes
over the entire cell (Cai and Sheetz 2009) leads to a global
response that modulates the cell shape and the direction of cell
movements (Keren et al 2008).

Efficient and fast remodeling of the cytoskeleton is
essential for the cells so that they can respond to external
solicitations such as blood shear flow or various infections.
Remodeling of the actin filaments is of particular interest
since they contribute both to the visco-elastic properties of

the cytoplasm and to the stability of the cellular adhesions.
In fact cells adhere to the ECM through adhesive patches that
are connected to the actin contractile network (see figures 1(b)
and 4(a)).

The connection between the transmembrane adhesion
proteins and the actin cytoskeleton makes the difference
between the adhesion of a dead cell, and that of a live cell
to the ECM. In contrast to dead cells, live cells continuously
remodel these integrin–ECM, ligand–receptor bonds (Tsuruta
et al 2002). Additionally, as detailed in section 3, these
micrometer-sized domains with a dense concentration of
adhesion receptors are unexpected from a thermodynamic
point of view (Lenne and Nicolas 2009). This suggests
that non-equilibrium mechanisms, such as energy-consuming
aggregation of proteins or active transport of the adhesion
proteins from the dilute to the dense phase, must be at play.
The actin cytoskeleton could be a major player in this out-
of-equilibrium process. Firstly, it can bear directional, active
transport along the filaments by means of specific molecular
motors. Secondly, the constant association of actin monomers
at the end of the filaments that connect to the adhesive
architecture is a source of energy, ATP being released during
the polymerization process (Pollard and Borisy 2003).

Some more information is required to understand why
tissue cell adhesion differs from the adhesion of a partially
wetting droplet to a surface, and how it contributes to the
cell’s ability to probe its physical environment (Bruinsma
and Sackmann 2001, Discher et al 2005). As previously
mentioned, tissue cell adhesion organizes as micrometer-
sized patches, with non-uniform distribution (figure 1(b)).
Specific interactions between the adhesion proteins in the cell
membrane and the ECM are required to observe such dot-like
organization of the adhesion regions. In vivo ECMs indeed
contain proteins such as fibronectin, laminin, elastin or various
forms of collagen, which strongly interact with transmembrane
adhesion proteins from the integrin family (Zaidel-Bar et al
2007, Parsons et al 2010). Formation of ‘key–lock’ bonds
between the extracellular and transmembrane proteins triggers
the activation of multiple signaling cascades (Alberts et al
2002). In the absence of such an engagement of the adhesion
proteins, as would occur on a non-adhesive surface or in the
case of red blood cells that do not have any of these adhesion
proteins, cell adhesion on the surface relies on the non-specific
interactions with the surface of the extracellular coat that
wraps the cell membrane. Then the cell maintains a regular,
round shape and adhesion resembles the wetting of a partially
wetting droplet (Cuvelier et al 2007). However, tissue cells
soon degrade and die in the absence of engagement of the
adhesion proteins. The linkage of specific transmembrane
proteins to proteins in the ECM is crucial for the adhesion of
tissue cells. Signaling cascades that follow their engagements
are extensively being studied, since dysfunction of one of
them usually impacts other cellular mechanisms, such as
division, differentiation or even cell survival. They result
in the aggregation of numerous proteins, which are finely
connected to the actin cytoskeleton (figure 5). At present,
this complex architecture of proteins, called adhesome (Zaidel-
Bar and Geiger 2010), is shown to share about 200 potential
interactions.
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polar force
pulling the cell along

Lamellopodium formation is usually suppressed in confluent cell layers and, although cryptic
lamellopodia can sometimes appear beneath the cells, these appear to have negligible e↵ect on the
cell dynamics, suggesting that any polar contribution to the forces on a cell in a monolayer is small.
However, in the presence of an external stimulus, e.g. a wound or a variation in substrate sti↵ness,
the cell layer can show directed, collective motion [?]. Wound healing experiments have suggested
that this may be mediated by leader cells that pull the colony forwards [?]. Of particular interest,
recent experiments have shown that adding RAB5A to a confluent cell layer leads to flocking,
with the cells moving coherently in a preferred direction, and about five times faster than in the
unperturbed, active turbulent state [?]. The explanation for this striking change in behaviour is not
clear, but a plausible reason is the disturbance of inter-cell interactions. The crossover from glassy
dynamics to flocking has been reproduced in a vertex model by including an alignment between the
polarisation of a cell to its velocity. Also, agent-base modeling with polarisation-velocity alignments
and repulsive interactions leads to a flocking motion [?] [?].

Other numerical models of cell motility have included cellular Potts models [?], vertex models [?],
continuum approaches and phase field models [?] [?]. Here we choose the phase field approach which
allows the cells to change shape, and hence allows us to model nematic ordering and the resultant
active turbulence. We include both polar and nematic driving and study the cell dynamics which
results as their relative importance is varied. This allows us to to compare the conditions that lead
to flocking or to active turbulence, hence unifying a range of collective cell dynamics. Moreover
the most physical way to include the polar force is not known, for example a cell could tend to
propel along its long axis, or along its direction of motion or in a random direction. We compare
the di↵erent possibilities, thus suggesting how these might be distinguished in experiment.

In the next section we describe the numerical model in detail. In section 3 we present our
results, considering in turn the cell velocities, their shapes and the appearance of breaks in the cell
monolayer. Section discusses the results and suggests ideas for future simulations and experiments.
check when results section finished

(a) (b) (c)

Figure 1: Forces densities acting on a cell (a) polar (b) extensile, nematic (c) contractile, nematic.
In (b) and (c) the lines denots the nematic director.

2 The phase field model

We model a monolayer of cells using a coarse-grained, phase field approach. This resolves individual
cells and the forces between them, but not the internal machinery of the cell. The phase field method

2



Polar force

2.2 Active nematic force

The active nematic force models the way in which a cell is pulled or pushed by the motion of its
neighbours. For each cell we calculate the deformation tensor
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Z
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and define an associated stress field due to all the cells

�D = �⇣
X

i

'i(x)Di (8)

where ⇣ is the strength of the nematic forcing. The active nematic force density is then

f(x)nem = r · �D. (9)

This is constant within the cells but acts at interfaces. ⇣ > 0 and ⇣ < 0 model extensile and
contractile stress, Figs. ?? and ??, respectively. For an individual cell, an extensile (contractile)
force density elongates (contracts) the cell along its deformation axis. For a collection of cells, the
active force also? enhances any parallel alignment of neighbour cells. is this true for both extensile
and contractile?

We note in passing that deformation tensor Di is related to the usual definition of the nematic
Q-tensor [?]

Qi = Si(nin
T
i � I/2) (10)

where ni, the direction of the elongation axis of the object, is the normalised eigenvector of Di

which corresponds to its largest eigenvalue and Si is half the di↵erence between its eigenvalues. We
can measure the deformation of a cell by

Di =
1

2
Si =

q
D2

xx,i +D2
xy,i (11)

where Dxx,i and Dxy,i are the xx and xy components of the deformation tensor.
check notation consistent with using n and S below

2.3 Active polar force

The active polar contribution models any unbalanced force acting on a cell due to actin treadmilling.
We associate each cell with a polarisation vector pi, and define the polar force to act in the direction
of the polarisation vector and to be uniformly distributed over the cell and of strength ↵ (Fig. ??).

f
pol
i (x) = ↵'i(x)pi. (12)

The most physical route to choose the direction of the polarisation vector pi is unclear. Therefore
we compare di↵erent possibilities to predict di↵erences in behaviour that might be observed in
experiment:

1. active Brownian motion (Brownian)

We first simulate cell layers where the polarisation direction is subject to Gaussian white
noise. Writing pi = ↵(cos ✓i, sin ✓i), where ↵ is the constant magnitude of pi,

@t✓i = Dpol ⌘. (13)

⌘ is standard Gaussian noise with standard deviation 1 and Dpol is the strength of the noise.
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2 The phase field model

We model a monolayer of cells using a coarse-grained, phase field approach. This resolves individual
cells and the forces between them, but not the internal machinery of the cell. The phase field method
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2.2 Active nematic force
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2.3 Active polar force

The active polar contribution models any unbalanced force acting on a cell due to actin treadmilling.
We associate each cell with a polarisation vector pi, and define the polar force to act in the direction
of the polarisation vector and to be uniformly distributed over the cell and of strength ↵ (Fig. ??).
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The active polar contribution models any unbalanced force acting on a cell due to actin treadmilling.
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We model a monolayer of cells using a coarse-grained, phase field approach. This resolves individual
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Phase diagram

(a) (b)

Figure 4: Phase diagram for (a) case 3 (polar force aligned with long axis of the cell) (b) case 2
(polar force aligned with the velocity of the cell) for Jpol = 0.1 and ! = 0.005. Jammed states
are identified by a rearrangement rare < 0.15. Liquid states have a rearrangement rate > 0.15.
Flocking states have a Viscek order parameter Va > 0.15. colours need to be consistent between
the two plots - we will need to comment that you don’t see the liquid in (b) as zeta is increased
because the scale is blown up to be able to see the flocking- I assume

3, polar force aligned with the velocity of the cell, but, as is clear from the rearrangement rates
plotted in Fig. ??, very similar behaviour is seen for all choices of the polar force.

3.2 Cell deformations

In the absence of active forcing the cells will relax to a hexagonal shape. We next consider how
they are stretched by active forcing by measuring the average cell deformation.

D =

⌧q
Dxx,i(t)2 +Dxy,i(t)2

�

t,i

(17)

where Dxx,i and Dxy,i are the xx and xy components of the deformation tensor D for cell i and the
average is taken over cells and time. Note that D = 0 so why do the curves of D have a minimum
at 0.5? corresponds to isotropic cells and D = 3 corresponds to cells with an aspect ratio ⇠1.75
check.

In all the models we consider changes in deformation are most marked in response to changes
in the active nematic forcing ⇣. Choosing extensile activity, ⇣ > 0 (Fig. ??), the nematic force
contributes to the deformation by tending to elongate individual cells, but also by acting to align
neighbouring cells. The variation of D with ⇣ is shown in Fig. ?? for indicative parameters for
each of the four choices of the polar force. In several cases the increase of D with ⇣ is particularly
pronounced around ⇣ = 0.03 which corresponds to the crossover from the jammed to the liquid
state. This transition is sharper for lower values of the polar force.
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(a) (b)

Figure 2: Trajectories of cells in case deform. 1 for 2100 time steps in (a) the jammed state with
! = 0.005,↵ = 0.02, ⇣ = 0.00 and (b) the liquid state with ! = 0.005,↵ = 0.00, ⇣ = 0.04.

(a) (b)

Figure 3: Rearrangement rate as a function of the strength of (a) the nematic force ⇣, (b) the polar
force ↵. ! = 0.01 in both frames. The inset plot in (b) is for case 4: polar force slaved to the
deformation of the cell, where the control parameter is �.

take place, as either ⇣ or ↵ are increased. This is illustrated in Fig. ?? where the trajectories of the
cell centres are compared in typical jammed and liquid configurations.

The transition between the two regimes can be investigated more quantitatively by plotting the
average number of cells that change neighbours at each time step. Fig. ?? shows how this quantity
changes as a function of the strengths of the nematic and polar active forces, ⇣ and ↵, respectively.
Fig. ?? shows a sharp crossover between glassy and liquid dynamics as a function of ⇣. As ↵ is
increased (for small ⇣) there is a much smoother increase in the rearrangement rate (Fig. ??).
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2.2 Active nematic force

The active nematic force models the way in which a cell is pulled or pushed by the motion of its
neighbours. For each cell we calculate the deformation tensor

Di = �

Z
dx

⇢
r'ir'T

i �
1

2
Tr(r'ir'T

i )

�
(7)

and define an associated stress field due to all the cells

�D = �⇣
X

i

'i(x)Di (8)

where ⇣ is the strength of the nematic forcing. The active nematic force density is then

f(x)nem = r · �D. (9)

This is constant within the cells but acts at interfaces. ⇣ > 0 and ⇣ < 0 model extensile and
contractile stress, Figs. ?? and ??, respectively. For an individual cell, an extensile (contractile)
force density elongates (contracts) the cell along its deformation axis. For a collection of cells, the
active force also? enhances any parallel alignment of neighbour cells. is this true for both extensile
and contractile?

We note in passing that deformation tensor Di is related to the usual definition of the nematic
Q-tensor [?]

Qi = Si(nin
T
i � I/2) (10)

where ni, the direction of the elongation axis of the object, is the normalised eigenvector of Di

which corresponds to its largest eigenvalue and Si is half the di↵erence between its eigenvalues. We
can measure the deformation of a cell by

Di =
1

2
Si =

q
D2

xx,i +D2
xy,i (11)

where Dxx,i and Dxy,i are the xx and xy components of the deformation tensor.
check notation consistent with using n and S below

2.3 Active polar force

The active polar contribution models any unbalanced force acting on a cell due to actin treadmilling.
We associate each cell with a polarisation vector pi, and define the polar force to act in the direction
of the polarisation vector and to be uniformly distributed over the cell and of strength ↵ (Fig. ??).

f
pol
i (x) = ↵'i(x)pi. (12)

The most physical route to choose the direction of the polarisation vector pi is unclear. Therefore
we compare di↵erent possibilities to predict di↵erences in behaviour that might be observed in
experiment:

1. active Brownian motion (Brownian)

We first simulate cell layers where the polarisation direction is subject to Gaussian white
noise. Writing pi = ↵(cos ✓i, sin ✓i), where ↵ is the constant magnitude of pi,

@t✓i = Dpol ⌘. (13)

⌘ is standard Gaussian noise with standard deviation 1 and Dpol is the strength of the noise.
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we then introduce a contractile stress ζcQi, where ζq is the strength of the contractility and179

Qi = p⃗Ti p⃗i −
I

2
p⃗2i is the tensor that characterises the orientation of the polarity: the largest180

eigenvector of Qi is p⃗i meaning that the contractile stress acts along the direction of protrusions181

formation. Considering that the vectors ∇⃗φi describe the normal vector to the interface we182

obtain the following expression for the self-propulsion force:183

F⃗ sp
i = αp⃗i +

∫

dx⃗
(

ζqφiQi

)

· ∇⃗φi, (3)

where matrix multiplication is implied in the last term.184

Next we consider the interaction stresses σint
i to define the interaction forces F⃗ int

i =
∫

dx⃗φi∇⃗ ·σint =185

−
∫

dx⃗σint · ∇⃗φi. Note that ∇⃗φ is only non-zero at the interfaces between the cells and as such186

the interaction force is acting at the cell-cell interfaces. We decompose the interaction stress187

in between the cells into passive and active contributions σ
int
i = σ

passive
i + σ

active
i : the passive188

contribution has a thermodynamic nature and is calculated from the free-energy:189

σ
passive
i =

∑

i

−
δF

δφi

(4)

while the active contribution leads to the force generation between cells at their interface through190

adherens junction. Following our recent work13 this takes the form191

σ
active
i = ζs

∑

j

φjSj, (5)

where Si = −
∫

dx⃗ (∇⃗φi)T∇⃗φi is the deformation tensor for cell i, characterising the anisotropy192

of the cell shape such that the largest eigenvector of Si corresponds to the direction of the193

elongation of the cell.194

Alignment dynamics. We now introduce the dynamics of the cell polarity, modeling the195

mechanism that determines in which direction the polar force should act. There are many196
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Contact inhibition of locomotion (Abercrombie, 1953)

If two cells come into contact they tend 
to move away from each other

cells prefer to move into free space
colony expansion / wound healing

Cells within a colony are much less
likely to form lamellopodia

Strength of the polarization decreases 
with increasing cell-cell overlap

Michael Abercrombie and contact inhibition    9 

epithelial cells and fibroblasts is driven by the formation of hetero-
typic adhesions of E- and N-cadherin, where the epithelial cells 
solely express E- and the fibroblasts solely express N-cadherin 
(Omelchenko et al., 2001). 

In additional to classical cadherins, Eph receptors have also 
been implicated in driving CIL (Astin et al., 2010; Batson et al., 
2013; Batson et al., 2014; Marston et al., 2003). Eph receptors 
are a group of tyrosine receptors that bind to transmembrane 
ephrin ligands from a neighbouring cell and induce bidirectional 
signalling in both the ligand- and receptor-expressing cell (Kul-
lander and Klein, 2002). Eph-ephrin signalling can result in either 
a repulsive or attractive response (Poliakov et al., 2004). EphA 
signalling is required for CIL in prostate cancer cells (Batson et 
al., 2013; Batson et al., 2014) whereas EphB signalling supresses 
this response (Astin et al., 2010; Batson et al., 2013). However, 
EphB signalling induces a CIL response upon a collision in MTln3 
cells, a highly invasive breast adenoacarinoma cell line (Lin et al., 
2015), and fibroblasts (Marston et al., 2003). Interestingly both EphA 
and EphB signalling is required for CIL in Cajal-Retzius neurons 
(Villar-Cerviño et al., 2013). There is evidence of cadherin-Eph 
signalling crosstalk in heterotypic CIL between glial and glioblas-
toma cells (Tanaka et al., 2012). Upon a collision N-cadherin stimu-
lates a CIL response through its association with the nucleotide 
diphosphate kinase Nm23-H1 (Tanaka et al., 2012). Nm23-H1 
localises to N-cadherin where it binds Tiam1, a guanine exchange 
factor involved in the activation of Rac1, and blocks Tiam1 from 
activating Rac1 near the cell-cell contact. However, the expres-
sion of ephrin-B1 supresses CIL by blocking the association of 
Nm23-H1 with Tiam1 and thus elevates the activity of Tiam1 and 
consequently Rac1 at the cell-cell contact (Tanaka et al., 2012). 
In order for CIL to occur, a co-ordinated response is likely to be 
required between cadherin-based adhesions and Eph receptors 
such as that which occurs during embryonic boundary formation 
in Xenopus mesoderm (Fagotto et al., 2013).

A recent paper modelling CIL between cells on 1-dimensional 
lines has highlighted the importance of tightly controlled cell-
cell adhesion strength for CIL to occur (Kulawiak et al., 2016). 
Increased adhesions can lead to the formation of chains of cells 
where cells no longer separate after colliding (Desai et al., 2013; 
Kulawiak et al., 2016).

Cell-matrix adhesions
Cell-matrix adhesions are large multi-protein complexes that 

couple the extracellular matrix to the actin cytoskeleton thus 
creating traction which facilitates cell migration (Alexandrova et 
al., 2008; Gardel et al., 2010). Abercrombie speculated about the 
dynamic behaviour of cell-matrix adhesions during CIL in 1970 
(Abercrombie, 1970). However, it was not Abercrombie but Harris 
who first attempted to elucidate their behaviour during CIL (Har-
ris, 1973). Harris used a crude technique to infer the presence 
of attachment to the substrate. A capillary was inserted between 
the cell and the substrate and, with the use of micromanipulation 
and time-lapse cinematography, the regions where the cell was 
attached to the substrate were revealed (Rappaport and Rappaport, 
1968). Using this technique Harris concluded that a detachment of 
the cell-matrix adhesions in the lamellae occurs upon a collision 
resulting in the transfer of tension to the cell-cell contact and the 
subsequent cell-cell separation (Harris, 1973). However, when 
Abercrombie himself came to investigate the behaviour of the 

cell-matrix adhesions in the colliding lamellae using interference 
reflection microscopy, he observed a conflicting result (Abercrombie 
and Dunn, 1975). Interference reflection microscopy assumes that 
the regions where the cell membrane is closest to the substrate 
is where the cell-matrix adhesions are located (Curtis, 1964). 

Fig. 4. Role of cytoskeleton and cell-cell adhesions in contact inhibi-
tion of locomotion. Illustration of the stages of contact inhibition of 
locomotion. Cytoskeleton rearrangements are illustrated in the left-hand 
cell whilst the adhesions involved and how they change is illustrated in 
the right-hand cell. (A) Freely migrating cells show actin driven protrusions 
stabilised by microtubules. Cells have large cell-matrix adhesions in their 
leading edge. (B) Upon a collision cadherin-based adhesions form between 
cells. Eph receptors bind to ephrin from the colliding cell partner and pro-
trusions start to collapse. Actin flow is reduced and an actin stress fibre 
and microtubule bundles form, these are aligned between colliding cells. 
Cell-matrix adhesions begin to disassembly near to the cell-cell contact. 
(C) Eph/ephrin signalling and cadherin-based adhesions lead to Rho acti-
vation and Rac inhibition at the cell-cell contact. Protrusions towards the 
contact completely collapse. Actin based protrusions develop away from 
the contact as the cells repolarise. Cell-matrix adhesions begin to enlarge 
in these new protrusions. (D) The cells eventually separate thanks to the 
disassembly of large cell-matrix adhesions near the contact, the actin stress 
fibre and microtubule catastrophe events. Microtubules form in the new 
leading edge stabilising protrusions.

B

C

D

A

Fig from Int. J. Dev. Biol. 62: 5-13 (2018) 



But can also have dipolar forces due to cell-cell junctions:
these are probably extensile
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But can also have dipolar forces due to cell-cell junctions:
these are probably extensile

Polar and Apolar Contributions to Collective Cell Motility

1 Introduction

1.1 The phase field approach
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2.2 Active nematic force

The active nematic force models the way in which a cell is pulled or pushed by the motion of its
neighbours. For each cell we calculate the deformation tensor

Di = �

Z
dx

⇢
r'ir'T

i �
1

2
Tr(r'ir'T

i )

�
(7)

and define an associated stress field due to all the cells

�D = �⇣
X

i

'i(x)Di (8)

where ⇣ is the strength of the nematic forcing. The active nematic force density is then

f(x)nem = r · �D. (9)

This is constant within the cells but acts at interfaces. ⇣ > 0 and ⇣ < 0 model extensile and
contractile stress, Figs. ?? and ??, respectively. For an individual cell, an extensile (contractile)
force density elongates (contracts) the cell along its deformation axis. For a collection of cells, the
active force also? enhances any parallel alignment of neighbour cells. is this true for both extensile
and contractile?

We note in passing that deformation tensor Di is related to the usual definition of the nematic
Q-tensor [?]

Qi = Si(nin
T
i � I/2) (10)

where ni, the direction of the elongation axis of the object, is the normalised eigenvector of Di

which corresponds to its largest eigenvalue and Si is half the di↵erence between its eigenvalues. We
can measure the deformation of a cell by

Di =
1

2
Si =

q
D2

xx,i +D2
xy,i (11)

where Dxx,i and Dxy,i are the xx and xy components of the deformation tensor.
check notation consistent with using n and S below

2.3 Active polar force

The active polar contribution models any unbalanced force acting on a cell due to actin treadmilling.
We associate each cell with a polarisation vector pi, and define the polar force to act in the direction
of the polarisation vector and to be uniformly distributed over the cell and of strength ↵ (Fig. ??).

f
pol
i (x) = ↵'i(x)pi. (12)

The most physical route to choose the direction of the polarisation vector pi is unclear. Therefore
we compare di↵erent possibilities to predict di↵erences in behaviour that might be observed in
experiment:

1. active Brownian motion (Brownian)

We first simulate cell layers where the polarisation direction is subject to Gaussian white
noise. Writing pi = ↵(cos ✓i, sin ✓i), where ↵ is the constant magnitude of pi,

@t✓i = Dpol ⌘. (13)

⌘ is standard Gaussian noise with standard deviation 1 and Dpol is the strength of the noise.
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Increasing the magnitude of the extensile dipolar forces – no polar 
driving



Phase diagram

(a) (b)

Figure 4: Phase diagram for (a) case 3 (polar force aligned with long axis of the cell) (b) case 2
(polar force aligned with the velocity of the cell) for Jpol = 0.1 and ! = 0.005. Jammed states
are identified by a rearrangement rare < 0.15. Liquid states have a rearrangement rate > 0.15.
Flocking states have a Viscek order parameter Va > 0.15. colours need to be consistent between
the two plots - we will need to comment that you don’t see the liquid in (b) as zeta is increased
because the scale is blown up to be able to see the flocking- I assume

3, polar force aligned with the velocity of the cell, but, as is clear from the rearrangement rates
plotted in Fig. ??, very similar behaviour is seen for all choices of the polar force.

3.2 Cell deformations

In the absence of active forcing the cells will relax to a hexagonal shape. We next consider how
they are stretched by active forcing by measuring the average cell deformation.

D =

⌧q
Dxx,i(t)2 +Dxy,i(t)2

�

t,i

(17)

where Dxx,i and Dxy,i are the xx and xy components of the deformation tensor D for cell i and the
average is taken over cells and time. Note that D = 0 so why do the curves of D have a minimum
at 0.5? corresponds to isotropic cells and D = 3 corresponds to cells with an aspect ratio ⇠1.75
check.

In all the models we consider changes in deformation are most marked in response to changes
in the active nematic forcing ⇣. Choosing extensile activity, ⇣ > 0 (Fig. ??), the nematic force
contributes to the deformation by tending to elongate individual cells, but also by acting to align
neighbouring cells. The variation of D with ⇣ is shown in Fig. ?? for indicative parameters for
each of the four choices of the polar force. In several cases the increase of D with ⇣ is particularly
pronounced around ⇣ = 0.03 which corresponds to the crossover from the jammed to the liquid
state. This transition is sharper for lower values of the polar force.

7

strength of extensile 
dipolar force

strength of 
polar force
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Figure 1 | RAB5A promotes coherent, ballistic motion of jammed epithelia. a, Left: snapshots of the velocity field obtained from PIV analysis of
doxycycline-treated control (Ctrl) and RAB5A-MCF-10A cells seeded at jamming density and monitored by time-lapse microscopy (Supplementary
Movie 2). The red arrow in each inset is the mean velocity v0 (average over the entire field of view). The colour map reflects the alignment with respect to
the mean velocity, quantified by the parameter a(x)= (v(x) ·v0)/(|v(x)||v0|). The local velocity is parallel (a=+1) or antiparallel (a=�1) to the mean
direction of migration. Right: root mean square velocity vr.m.s. (representative of >10 independent experiments). Vertical lines indicate the time interval
used for the analysis of motility parameters. b, Left plots: migration paths of control and RAB5A-MCF-10A cells (Supplementary Movie 6) seeded sparsely
to monitor individual cell motility and analysed using the Chemotaxis Tool ImageJ software plugin. Right plots: velocity and persistence of the locomotion
of cells. Data are the mean ± s.d. (n=40 single cells/experiment/genotype of three independent experiments); NS, not significant. c, Snapshots depicting
the angular velocity of control and RAB5A-MCF-10A cells seeded at jamming density and monitored by time-lapse microscopy (Supplementary Movie 7).
Angular velocity vectors are calculated by CIV analysis. The colour code indicates the direction of migration. Homogeneous and inhomogeneous scattered
colours indicate regions with high and low migration coherence, respectively. Scale bar, 100 µm. Representative images from n=5 time-lapse series.
d–f, PIV analysis of motion of doxycycline-treated control and RAB5A-MCF-10A cells seeded at jamming density (Supplementary Movie 2). In e, vertical
lines indicate the time interval used for the analysis of motility parameters. d, Left: velocity correlation functions CVV evaluated in the time window
comprised between 4 and 12 h during which the availability of EGF allows migration. The continuous lines are best fits of CVV with a stretched exponential
function. Right: correlation lengths Lcorr (five movies/experimental condition out of three to eight independent experiments). e, Order parameter  as a
function of time.  = 1 means a perfectly uniform velocity field.  ⇠=0 indicates randomly oriented velocities. f, Left: mean square displacements (MSD)
obtained by numerical integration of the velocity maps. Right: persistence length Lpers obtained by fitting the MSD curves with a model function
(continuous lines) describing the transition from a short-time ballistic to a long-time di�usive behaviour.

mammary epithelial MCF-10A cells (Supplementary Fig. 1a).
These cells form polarized monolayers and, upon reaching
confluence, display a typical collective locomotion mode
characterized by the emergence of large-scale, coordinated
motility streams, involving tens of cells. As cells keep on dividing,
density increases, causing a near complete kinetic arrest akin
to a jamming or rigidity transition5,16 (Supplementary Fig. 1b
and Supplementary Movie 1). Unexpectedly, under these latter
conditions, elevation of RAB5A-reawakened motility of kinetically

arrested monolayer by promoting large and heterogeneous
multicellular streams (Fig. 1a and Supplementary Movies 2 and
3). RAB5A expression had marginal e�ects on the rate of cell
division of confluent monolayers (Supplementary Fig. 1c), and
collective motility was unperturbed by inhibition of cell division
(Supplementary Fig. 1d and Supplementary Movie 4). Large-scale,
collective locomotion was also induced by expression of RAB5A
in jammed keratinocyte monolayers (Supplementary Fig. 1e
and Supplementary Movie 5) and oncogenically transformed
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(a) (b)

Figure 2: Trajectories of cells in case deform. 1 for 2100 time steps in (a) the jammed state with
! = 0.005,↵ = 0.02, ⇣ = 0.00 and (b) the liquid state with ! = 0.005,↵ = 0.00, ⇣ = 0.04.

(a) (b)

Figure 3: Rearrangement rate as a function of the strength of (a) the nematic force ⇣, (b) the polar
force ↵. ! = 0.01 in both frames. The inset plot in (b) is for case 4: polar force slaved to the
deformation of the cell, where the control parameter is �.

take place, as either ⇣ or ↵ are increased. This is illustrated in Fig. ?? where the trajectories of the
cell centres are compared in typical jammed and liquid configurations.

The transition between the two regimes can be investigated more quantitatively by plotting the
average number of cells that change neighbours at each time step. Fig. ?? shows how this quantity
changes as a function of the strengths of the nematic and polar active forces, ⇣ and ↵, respectively.
Fig. ?? shows a sharp crossover between glassy and liquid dynamics as a function of ⇣. As ↵ is
increased (for small ⇣) there is a much smoother increase in the rearrangement rate (Fig. ??).

This information is summarised in the phase diagram in Fig. ??a where we choose an unjamming
transition of 0.15 as the boundary between the glassy and liquid phases. These results are for case

6

rearrangement rate: average number of cells that change neighbours
at each time step

unjamming

dipolar                                                     polar
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extensile cell-cell interactions => nematic ordering => active turbulence

(NB cf shear flows in continuum active nematics)

Why can circular cells show topological defects





236 Spontaneous defect pair creation leads to the emergence
237 of a state resembling the active turbulence observed in
238 continuum theories of active nematics [40] (see
239 Supplmental Material [31], Movie 2). The vorticity auto-
240 correlation function CωðrÞ ¼ hωðr; tÞωð0; tÞi=hωð0; tÞ2i
241 for different values of the activity shows a well-defined
242 length scale determined by the minimum of CωðrÞ
243 [Fig. 3(a)]. Autocorrelation functions for the velocity and
244 the nematic field show similar behavior (see Supplemental
245 Material, Figs. ?? and ??). This indicates that force trans-
246 mission mediated by cell-cell contacts leads to long-range
247 flows at macroscopic scales. Increasing activity ζ leads
248 to smaller vortices, while increasing elasticity γ results in
249 larger vortices [Figs. 3(b) and 3(c)]. In addition, consistent
250 with continuum hydrodynamic models [42,43], defects are
251 always created and annihilated in pairs and defect density
252 and defect creation rate both increase with increasing
253 activity ζ (Supplemental Material, Fig. ??).
254 Finally, we analyzed the properties of flows and stresses
255 around defects, which are crucial in determining the
256 dynamics of active turbulence [40]. In particular, the
257 isotropic stress patterns around þ 1=2 defects were found
258 to work as a mechanotransduction pathway to control cell
259 death and its subsequent expulsion from an epithelial
260 monolayer [6]. Figure 4 shows the isotropic stress patterns
261 and flow fields around % 1=2 defects obtained from the cell-
262 based model. These agree very well with the analytical
263 prediction of flow fields around isolated defects [44,45],
264 as well as with recent experimental measurements of

265defects flow fields and isotropic stresses in epithelial
266monolayers [6].
267Together, our results demonstrate that a cell-based model
268which accounts for cell deformability and force trans-
269mission at cell-cell contacts can serve as a minimal and
270generic model to explain the active liquid crystal properties
271found recently in epithelial monolayers. The model repro-
272duces the phenomenology of active liquid crystals, together
273with mechanical stress and flow patterns consistent with
274experimental measurements. It explains that a bootstrap
275feedback between shape deformations and intercellular
276driving allows cells of isotropic shape, such as MDCK
277cells or nonaggressive human breast cancer cells (MCF-7),
278to drive an instability to spontaneous flow and to create
279topological defects. Even though our model is based on a
280force-balance formulation, in the macroscopic limit, it
281shows clear hydrodynamic behavior due to the long-range
282interactions mediated by cell-cell contacts.
283Our minimal model leads to a number of testable
284predictions that could challenge current understanding in
285tissuemechanics. Even though individual cells are internally
286made of contractilematerial [46], there is now clear evidence
287that their macroscopic collective behavior can show proper-
288ties of extensile nematic theories [6,7], but the underlying
289mechanism remains controversial. Here, we predict that
290such a coarse-grained extensility can arise from interactions
291between the cells. High resolution measurements of the

(a)

(b) (c)

F3:1 FIG. 3. Properties of flows during active turbulence for an
F3:2 extensile system. (a) Spatial autocorrelation function CωðRÞ ¼
F3:3 hωðRÞωð0Þi=hωð0Þ2i of the vorticity for different values of ζ.
F3:4 (b)–(c) Dependence of the vorticity length, defined as the location
F3:5 of the minimum of the vorticity autocorrelation function, as a
F3:6 function of activity ζ and elasticity γ. Mean % std from five
F3:7 simulations.

(a)

(b)

F4:1FIG. 4. Average properties of þ 1=2 (a) and −1=2 (b) defects in
F4:2an extensile system with ζ¼ 5 × 10−3 and γ ¼ 1.4−2: nematic
F4:3field (top left), flow field (bottom left), σxx (top center), σyy
F4:4(bottom center), σxy (top right), pressure (bottom right). Colors
F4:5are normalized such that the maximum value is red and the
F4:6minimum value is blue. Average over five simulations and each
F4:7box shows a domain of size 100 × 100 and corresponds to
F4:8approximately 60 cells.
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Round up of forces

Passive: distinguishes different cells, determines their size
adhesion 

Active single cell forces

Active forces due to cell junctions
(probably) extensile dipole

contractile dipolar force (stresslet)         polar force
restoring the cell to circular                    pulling the cell along
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Why are the defects extensile?

MDCK cells

MDCK cells with 
cell junctions
Weakened
E-cadherin knock-out

Balasubramaniam et al.
Nature Materials, in press
bioRxiv 2020.10.28.358663

vinculin relocates from cell-cell
boundaries to cell-substrate boundaries



Questions:

Why do circular cells give active turbulence?
Extensile inter-cellular interactions

Flocking or active turbulence?
Polar or dipolar driving?
Contact inhibition of locomotion 
activated or not

Extensile or contractile dipolar driving?
Extensile wins for strong cell-cell junctions


