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Growing actin networks
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Cytoskeleton

-

Cytoskeleton polymers: microtubules + actin

Soft, Active Matter
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Actin monomers and filaments

Single actin subunit

Actin filament consisting
of multiple subunits




Polymerisation of protein filaments
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Actin polymerisation & depolymerisation

nucleus formation
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Actin binding proteins

, . Capping .
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Actin polymerisation: analytical calculations

c1 = kqcy — kpcicy — Bkncf,

» free monomers c,, polymerised c,, filaments Cy
* (de)polymerisation rate k, k,
* nucleation rate k£, and order

* Neglect dissociation of filaments

* Coupled nonlinear differential equations solved

numerically



Fit to pyrene assay polymerisation experiments
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- 1t - Brownian Dynamics

& - .

J_ . & Monte Carlo methods

IncIUding: Nucleation, 'Di‘ffu'sion, Polymerisation, Bending & Tethering
Can also include branching (Arp2/3), capping etc



Actin polymerisation pyrene assay & simulation

— 3.10uM — 1.98uM — 1.27uM — 0.812uM
— 2.48uM 1.59uM 1.02uM — 0.650uM
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Branching (with Arp2/3)




Polymerisation generating a force
Brownian ratchet model

membrane




Simulation of actin polymerisation pushing
Brownian ratchet mechanism

Time: 0.00 s




Phagocytosis

Cryptococcus ingested by macrophage




Phagocytosis simulations




Relate to continuum hydrodynamic models
Kruse et al,...

* Extensile active gel modeli.e. ¢ > 0

%
Oap & 5 (Pahs +psha) — 3

viscous stress active stress

distortion stress

* Growing filaments exert extensile stress
on network

* Nematic or polar?




Relate to flocking models
Vicsek, Toner&Tu,...

Self propelled particles
815,0 —

diffusion advection by self
propulsion velocity

Growing filaments polymerisation velocity

Nematic or polar? l::_} I_,_>
— —

Treadmilling vs filament growth



Boundaries matter

e Source term for fluid flow

* Pushing against barriers

* Retrograde flow/protrusions at cell boundary




Conclusions & future work

Polymerising actin networks are an example
of growing active matter

Simulations reproduce Brownian ratchet
mechanism for force generation

Continuum modelling of growing actin
networks including extensivity and self
propulsion




Title "Growing actin networks”
Abstract:

When driven out of equilibrium by the consumption of biochemical
energy, cytoskeletal protein filaments alone and in combination with
molecular motors are able to generate sufficient forces to deform and
move cells. In particular the protein actin can polymerise into
filamentous networks. Continued growth of actin filaments contributes
to cell motility and deformation.

First | will discuss our work on polymerising branched actin, comparing
in vitro data with simulations and analytical calculations. Then | will
present stochastic simulations of polymerising branched actin exerting
force to deform a model membrane in the context of phagocytosis,
which is a process by which immune cells engulf pathogens.

| will conclude with some discussion of potential universal
characteristics and general principles of growing active matter from the
perspective of growing actin networks.



