Growing actin networks Dr Rhoda Hawkins rhoda.hawkins@sheffield.ac.uk

Xu, Babcock & Zhuang, Nature Methods 9, 185–188 (2012) STORM, Scale bar 2µm

The University Of Sheffield.

Growing actin networks

Talk outline

- Introduction
- Polymerisation of actin networks
- Actin growth pushing membranes
- Universal characteristics & general principles?
- Conclusion

Xu, Babcock & Zhuang, Nature Methods 9, 185– (2012) STORM, Scale bar 2μm

Acknowledgements

My group: Naruemon Rueangkham James Bradford Natasha Cowley Helen Pringle Mehdi Ait Yahia

Relevant Biologist Collaborators: Simon Johnston, Jaime Canedo Ellen Allwood, John Palmer, Kathryn Ayscough

EPSRC Engineering and Physical Sciences Research Council

Cytoskeleton

Cytoskeleton polymers: microtubules + actin Soft, Active Matter

Actin

Xu, Babcock & Zhuang, Nature Methods 9, 185–188 (2012) STORM, Scale bar 2µm

Actin monomers and filaments

Polymerisation of protein filaments

Actin treadmilling:

Shrinkage growth growth polymerisation

Actin polymerisation & depolymerisation

pointed/minus end

Actin binding proteins

Actin polymerisation: analytical calculations

$$\dot{c}_1 = k_d c_f - k_p c_1 c_f - \beta k_n c_1^\beta,$$

$$\dot{c}_p = -k_d c_f + k_p c_1 c_f + \beta k_n c_1^\beta = -\dot{c}_1,$$

$$\dot{c}_f = k_n c_1^\beta.$$

- free monomers c_1 , polymerised c_p , filaments c_f
- (de)polymerisation rate $k_{d_i} k_p$
- nucleation rate k_n and order β
- Neglect dissociation of filaments
- Coupled nonlinear differential equations solved numerically

Fit to pyrene assay polymerisation experiments

Actin polymerisation TIRF & simulation

Including: Nucleation, Diffusion, Polymerisation, Bending & Tethering Can also include branching (Arp2/3), capping etc

Actin polymerisation pyrene assay & simulation

Branching (with Arp2/3)

Polymerisation generating a force Brownian ratchet model

Simulation of actin polymerisation pushing Brownian ratchet mechanism

Phagocytosis

Cryptococcus ingested by macrophage

Phagocytosis simulations

Relate to continuum hydrodynamic models Kruse et al,...

- Extensile active gel model i.e. $\zeta>0$

- Growing filaments exert extensile stress on network
- Nematic or polar?

Relate to flocking models Vicsek, Toner&Tu,...

Self propelled particles

- Growing filaments polymerisation velocity
- Nematic or polar?

Treadmilling vs filament growth

Boundaries matter

- Source term for fluid flow
- Pushing against barriers
- Retrograde flow/protrusions at cell boundary

Conclusions & future work

- Polymerising actin networks are an example of growing active matter
- Simulations reproduce Brownian ratchet mechanism for force generation
- Continuum modelling of growing actin networks including extensivity and self propulsion

Title "Growing actin networks"

Abstract:

- When driven out of equilibrium by the consumption of biochemical energy, cytoskeletal protein filaments alone and in combination with molecular motors are able to generate sufficient forces to deform and move cells. In particular the protein actin can polymerise into filamentous networks. Continued growth of actin filaments contributes to cell motility and deformation.
- First I will discuss our work on polymerising branched actin, comparing in vitro data with simulations and analytical calculations. Then I will present stochastic simulations of polymerising branched actin exerting force to deform a model membrane in the context of phagocytosis, which is a process by which immune cells engulf pathogens. I will conclude with some discussion of potential universal characteristics and general principles of growing active matter from the perspective of growing actin networks.