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Why? 

•  The power used by a CPU core is proportional to 
Clock Frequency x Voltage2  

•  In the past, computers got faster through increases 
to frequency 
–  Voltage was decreased to keep power reasonable. 

•  Now, voltage cannot be decreased any further 
–  0s and 1s would become indistinguishable 

•  Performance increases now achieved through 
exploiting parallelism 
–  Many cores and/or many operations per core 
–  need to keep power per core as low as possible 
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Why? 

•  Much of the resource expended by CPU cores is on 
functionality not generally that useful for HPC 

•  It costs a huge amount of money to design and 
fabricate new chips 
–  No longer feasible for relatively small HPC market 

•  Over the last few years, Graphics Processing Units 
(GPUs) have evolved for the highly lucrative 
gaming market 
–  Largely possess the right characteristics for HPC 

•  GPU vendors have tailored existing GPU 
architectures to the HPC market  
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AMD 12-core CPU 

•  Not much space on CPU is dedicated to compute 

= compute unit	


(= core)	
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NVIDIA Fermi GPU 

•  GPU dedicates much more space to compute 
–  At expense of caches, controllers, sophistication etc  

= compute unit	


(= SM 	


 = 32 CUDA cores)	
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Memory 

•  GPUs use Graphics memory: much higher 
bandwidth than standard CPU memory 

CPUs use DRAM	

 GPUs use Graphics DRAM	



•  For many applications, performance is very 
sensitive to memory bandwidth 
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Hardware 
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NVIDIA accelerated system:	
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Programming and Porting 

•  Programming GPU Accelerated systems involves managing 
distinct memory spaces and abstracting parallel hierarchy 
–  CUDA is most widely used language for NVIDIA GPUs 

•  Performance achievable depends on problem 
–  Many physics problems involve can be solved using grid-based finite 

difference techniques, and the grid-based parallelism can be mapped 
to the hardware parallelism 

•  Porting effort for legacy code depends on existing software 
engineering implementation 
–  All computationally significant functions must be coded for GPU 
–  All data accessed by these functions must be transferred to GPU 
–  All other functions accessing such data should be moved to GPU to 

avoid communication overheads 
–  This can be very difficult for heavily engineered applications, e.g 

those involving OO  
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Lattice Boltzmann Complex Fluid Performance 
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Lattice QCD Performance 
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Thomas Jefferson National Accelerator Facility

Challenges in Gauge Generation
• Amdahlʼs law effects
- Unaccelerated code can drag down performance of accelerated code

- Solution: move more code to GPU

- Problem: how to preserve 10 year investment in Chroma

- Solution: target QDP++ layer on which most of Chroma is built

• QDP-JIT:  Frank Winterʼs talk at this conference

• Strong Scaling
- As node count increases, local problem size decreases

- device occupancy is reduced, surface to volume ratio increases

- latencies start to become important

- Solution: hardware and software improvements 

Babich, Clark, Joo, 
Shi, Brower, Gottlieb, SCʼ11
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Thomas Jefferson National Accelerator Facility

QUDA Solver Scaling: FLOPS
• DD+GCR solver in QUDA 
- GCR solver with Additive Schwarz 

domain decomposed preconditioner

- no communications in preconditioner

- extensive use of 16-bit precision

• 2011:  256 GPUs on Edge cluster
• 2012: 768 GPUs on TitanDev
• 2013: On BlueWaters
- ran on up to 2304 nodes (24 cabinets)

- FLOPs scaling up to 1152 nodes

• Titan results: work in progress 0 192 384 576 768 960 1152 1344 1536 1728 1920 2112 2304
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Summary 

•  GPUs offer performance advantages over CPUs 
–  effective use of silicone 
–  graphics memory 

•  Many physics problems can in principle take 
advantage of GPU architecture 

•  Porting existing codes can be challenging, 
especially if they use high-level software 
abstractions 

•  There are examples of physics codes scaling to 
many GPUs in parallel 
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