

Use of Archer for Particle Physics

Andrew WashbrookUniversity of Edinburgh

Physics at Extreme Scales, Edinburgh 15th April 2014

Motivation

 The Edinburgh Particle Physics group had access to a share of resources on HECToR facility - and now on Archer

CHEP 2013 conference note:

Leveraging HPC resources for High Energy Physics http://indico.cern.ch/event/214784/session/9/contribution/438

- A feasibility study was performed to determine how an example HPC resource could be incorporated into a WLCG Tier-2 Grid site hosted at the same facility
- Now would like to move from HECToR feasibility studies a production-level service using Archer
- We have recently been looking at the issues and challenges in using the new Archer HPC facility for HEP-EX

ATLAS Computing Context

- The ATLAS experiment at the LHC:
 - Processes and manages more than 130 PB of data
 - Uses more than 150k CPUs distributed across 100 computing centres managed by central workload management system (PanDA)

ATLAS Dashboard 2013/14 Running Jobs

- Run 2 (2015-2018) data processing will require a lot more computing and storage resources
- Can HPC and Leadership Class Facilities help with the increased demand?
- Several HPC sites in Europe and the US are working with ATLAS including:
 - Mira
 - Titan
 - Stampede
 - Hydra, RZG Munich
 - Archer

HPC vs. High Throughput Computing

The following restrictions apply for HPC usage compared with traditional high throughput computing methods:

- Network access to and from HPC compute nodes more restrictive than Grid worker nodes
 - No WAN connectivity available
- OS deployed on compute nodes (CLE) is more lightweight than WN OS
 - Optimise code execution by limiting the number of interruptions to compute processes
 - Standard software libraries and packages not available
- No local disk on compute node
 - All job data is expected to reside on the shared filesystem
 - Not designed to cater for applications handling large input data sets and sustained
 I/O calls during job execution
- Separate identity management policy cannot be coupled to the federated systems we use on the Grid
 - All jobs submitted through my local account (for now)
- Restrictions are mostly driven by HPC user expectations rather than by strict technical barriers
- Exploring where adjustments to system configuration can be potentially adapted to accommodate ATLAS workloads

Job Submission and Scheduling

- Deployed Grid Middleware services at our existing Tier-2 site (ECDF) to enable jobs from the Grid to be routed to Archer
- ATLAS software not currently suited for MPI-type jobs but can efficiently process multi-core workloads
- Submit single HPC job can steer hundreds of wholenode jobs
- Other options explored include offloading critical sections of workload well suited for HPC resources
- Job resource request size can be adapted to queue conditions
- Backfilling could generate slots for HEP-EX use without loss of service to other HPC users

Archer Utilisation (1 week view)

Archer Queue Status (1 week view)

Outlook

- Aim to provide a production level HPC service in concert with local HEP-EX
 Tier-2 operations at ECDF in Edinburgh
- Currently investing time and effort into a building a robust setup and to resolve compatibility issues
- Previous experience with running LHC software at a shared cluster facility (ECDF) is proving useful
- Novel solutions will be required to fit the computing environment expectations from ATLAS and other HEP experiments
- Incorporating ideas and solutions from other HPC facilities in the US and Europe rather than working in isolation
- Edinburgh and Archer are well placed to contribute in this area

6