StarPU

Exploiting Heterogeneous Architectures
Through Task-Based Programming

-

(e

V 4

\

U —

Olivier Aumage
RUNTIME group
INRIA - University of Bordeaux

European CoE in Lattice Field Theory
1st Workshop — April 2014

TEAM RUNTIME

Efficient runtime systems for parallel architectures

= Runtime systems for HPC

- Perform dynamically what cannot be done statically

= Four directions

- Multithreading

- Communication

- Integration

- Compilers & analysis

= OQur aim

— Designing efficient runtime systems
- approaching the raw performance of hardware
— while preserving applications portability

- Portability of performance

http://runtime.bordeaux.inria.fr/

I‘WL—

Heterogeneous Parallel Platforms Programming

General purpose processors + specialized accelerators

= Combination of various units
- Latency-optimized cores

ed OO0 OO
- Throughput-optimized cores 00 00
- Energy-optimized cores > 00 00 M

» |[ntegrated cores

- Intel IvyBridge Application
- AMD Fusion

_r [[

- nVidia Tegra — = — T —

]]

= Distributed cores
- Standalone GPUs
- Intel Knights Corner (MIC)
- Intel Xeon Phi L
~ Intel Single-Chip Cloud (SCC) T [f— GPU
: : E—
- Many-core without cache consistency T

' Heterogeneous Parallel Platform

Heterogeneous Hardware Programming Issue

CPU vs GPU
Multiple strategies for multiple purposes . CPU .
= CPU ALU ALU
- Strategy Control SN —
- Large caches _ _
- Smart control Cache
- Purpose
- Complex codes, branching _
- Complex memory access patterns DRAM
-~ World Rally Championship car
= GPU
- Strategy

- Simplified control

- Purpose

- Regular data parallel codes

- Simple memory access patterns
-~ Formula One car

N
- Lot of computing power | | | | | | | | | | |

- GPU -

Overview of StarPU

Maximize use of processing units, minimize data transfers

= Task scheduling

- Dynamic CPU CPU
- Onevery PU g
— CPU CPU
General purpose. | AN N
- Accelerated/specialized " —\&E,
= Memory transfer management __ GPU M
- Eliminate redundant transfers \@, @,_ ==
- Software Distributed Shared- CPU CPU
Memory (DSM) S
M. =—

Heterogeneous Parallel Platform

Task Parallelism

Principles

Input dependencies

Computation kernel A = A+B
' [
Output dependencies A an

_—

- Task = an « elementary » computation + dependencies

Task Scheduling
Mapping the graph of tasks (DAG) on the machine

-

M.

o —

CPU CPU
N N/

GPU
N—

CPU CPU
NS N/

Overview of StarPU

Information needed from applications

= Tasks

- Implementation(s) HPC Applications
- CPU

Regular Compilers Libraries
MMX, SSE, AVX, ...

- Cuda, OpenCL
= Data
- Type, layout
- Vector, matrix, ...

Tasks

- Partioning

Task/Data Relationships

- Dependencies StarPU
- R, W, R/W, reduction, ...

= (Optional) Custom Scheduler Drivers (CPU, CUDA, OpencClL, ...)

- Open Scheduling Platform
S G L

I&zub/-

Prediction-based scheduling

Load balancing

= Task completion time estimation
- History-based

- User-defined cost function [
m
—~ Parametric cost model cpu#l | i I I
L]
= Can be used to implement scheduling cpu #2 | | i I
- E.g. HEFT -
Heterogeneous Earliest Finish Time CPU#3 | I i I
gpu#l T |i||l

gpu #H2 | | | I_i

v

Time

Example : UTK Magma (lin. alg.) & StarPU
University of Tennessee & INRIA HiePACS & INRIA Runtime

= QR factorization
- 4x Nvidia C1060 GPUs + 16x AMD CPUs (12 cores for computation, 4 cores for driving GPUSs)

T T T T T T T
4GPUs + 16 CPUs -+ | | 5 5 i :
4 GPUs + 4 GPUs - -x- - . R . Measured increase:
1000 - §GPUS +3CPUS —xc-- o e — +12 CPUs
S + g e e ,i»"’
1GPUs + 1 CPUs - T ~200 GFlops
800 ‘ ~ X
1 e L Expected increase:
+12 CPUs
;LT N oo x ~150 Gflops
600 - | x

Gflop/s

400

200
w7
¥
0 | | | |
0 5000 10000 15000 20000 25000 30000 35000 40000

Matrix order

Example : UTK Magma (lin. alg.) & StarPU

= « Super-Linear » efficiency in QR?

- Kernel efficiency
- sgeqrt: CPU: 9 Gflops GPU: 30 Gflops Speedup: ~3
- stsqrt: CPU: 12 Gflops GPU: 37 Gflops Speedup: ~3
- somqr: CPU: 8.5 Gflops GPU: 227 Gflops Speedup: ~27
- sssmqgr. CPU: 10 Gflops GPU: 285 Gflops Speedup: ~28

— Task distribution observed on StarPU
- sgeqrt: 20% of tasks on GPUs
- Sssmar: 92.5% of tasks on GPUs

- Taking advantage of heterogeneity!
- Preferably dedicate GPUs to high potential kernels
- Avoid slowing down GPUs with low potential kernels

I‘WL—

(Low-level) programming with StarPU
Library API

starpu_data_handle vector_handle;
starpu_vector_data_register(&vector_handle, 0,

(uintptr_t)vector, NX, sizeof(vector([0]));

struct starpu_task xtask = starpu_task_create();
task—>cl = &scal_cl;

task—>buffers[0].handle

vector_handle;

task—>buffers[0] .mode = STARPU_RW;
float factor = 3.14;
task—>cl_arg = &factor;

task->cl_arg_size = sizeof(factor);

starpu_task_submit(task);
starpu_task_wait_for_all();

starpu_data_unregister(vector_handle);

SOCL - StarPU as backend for OpenCL

= Run generic OpenCL codes
on top of StarPU Generic OpenCL Applications

= Events can be used between all
devices StarPU OpenCL layer

= Buffers can be shared by all devices StarPU
Data transfers handled by StarPU

= Compatibility with StarPU’s contexts

Dedicated command queues /
Dedicated schedulers -

I&'z

Synchronizations

A —

Portably programming StarPU through OpenCL

! !

Drivers OpenCL

—

StarPU - Additional features

= |Interfacing with MPI
- Automatically handles inter-node transfers

- MPI communication for enforcing inter-node task dependencies
- Automatically overlaps data transfers and computation

= Qut-of-core
- Large workloads

- Enable StarPU to evict temporarily unused data to disk
- Integration with StarPU’s memory management layer

Conclusion: A possible foundation for WP3?

WP3. Languages and programming models for heterogeneous architectures

= StarPU
- Multicores
- Intel MIC, CUDA/OpenCL devices

= Application integration
- Full API
- OpenCL compatibility

= Used in production

- Linear algebra libraries
- UTK’s MAGMA, grMUMPS.
- Dept. of Energy, Airbus Group

= Training activities
- European PRACE/PATC
- European COST

Conclusion: A possible foundation for WP3?

WP3. Languages and programming models for heterogeneous architectures

= StarPU Potential cooperation topics
- Multicores

- Intel MIC, CUDA/OpenCL devices = Scheduling physics applications
= Application integration
- Full API

- OpenCL compatibility

- Porting OpenCL codes
- Interfacing with languages/libraries

= Improving task-based codes

= Used in production debugging/profiling tools

- Linear algebra libraries
- UTK’s MAGMA, grMUMPS.

- Interoperability with
- Dept. of Energy, Airbus Group

- Allinea Software DDT/MAP?
= Training activities

- European PRACE/PATC
- European COST

I”“‘bf—

Thank you for your attention!

(e

U —

StarPU

http://runtime.bordeaux.inria.fr/starpu/

LGPL License
Open to external contributors

