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The Cyprus Institute: Computation-based Science and Technology research
center (CaSToRC)

CaSToRC:

@ Promotes High Performance Computing and Computational Sciences in Cyprus and through the EU
infrastructure project LInkSCEEM, in the Eastern Mediterranean region.

@ Activities include:
> Operation of the national supercomputing facility of Cyprus
> Representation of Cyprus to PRACE - leads Lattice QCD applications in WP8 of PRACE-2IP and
WP7 of PRACE-3IP, participates in prototyping in WP9 of PRACE-2IP and WP11 of PRACE-2IP
» A PhD program in computational sciences
» Training courses in HPC and code development
» A Simulation Lab in Nuclear and Particle Physics with JSC and DESY-Zeuthen

Group at CaSToRC collaborates closely with the one at the University of Cyprus
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Scientific areas of interest

@ Hadron structure - need exascale for attaining 1% precision at physical point
@ Algorithms and code development

@ Lattice Perturbation theory

@ Topology and simulation of SU(N)
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Systematic uncertainties

For precision hadron physics:
@ Finite lattice spacing a - take the continuum limit a — 0
Finite volume L - take infinite volume limit L — oo
Identification of hadron state of interest or excited state contributions - g4, (x) and nucleon o-terms
Simulation at physical quark masses - now feasible
Inclusion of quark loop contributions in hadronic observables - now feasible

— exascale computer resources
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Computational resources

Report on Nuclear Physics, Extreme Computing, Washington D.C., USA, Jan. 26-28, 2009.
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Computational resources
Report on Nuclear Physics, Extreme Computing, Washington D.C., USA, Jan. 26-28, 2009.
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Computational resources

Report on Nuclear Physics, Extreme Computing, Washington D.C., USA, Jan. 26-28, 2009.
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Axial charge ga

. — 3 = 7 * -
Axial-vector FFs: A% = 7,75 5 1h(X) => 3Tn(P’) [W'ysGA(qz) + L5 Gp(qz)] un(P)lg2—0
— yields Ga(0) = ga: i) well known experimentally, & ii) no quark loop contributions
Ny =2+ 1 + 1 twisted mass, a = 0.082 fm, m, = 373 MeV, 1200 confs
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@ No detectable excited states contamination
@ Consistent results between summation and plateau methods

For this study we used PRACE Tier-0 resources (JUQUEEN): 1.7 Tflops-years sustained making use of EigCG
— about 500 Tflops-years at the physical point for the same calculation keeping a the same and doubling L
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Axial charge ga

n
Axial-veotor FFs: A3, = dy,75 %5 ¥ (x) = $in(P) ['Yu’YSGA(q )+ T2 GolG? )] Un(P)l g2 o
— yields Ga(0) = ga: i) well known experimentally, & ii) no quark loop contributions
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Results from ETMC, C.A., M. Constantinou, S. Dinter, V. Drach, K.
Jansen, C. Kallidonis, G. Koutsou, arXiv:1303.5979

@ Results at physical pion mass are now becoming available — need a dedicated study with high statistics,
a larger volume and 3 lattice spacings

@ A number of collaborations are engaging in systematic studies, e.g.
° N, = 2 + 1 Clover, J. R. Green et al., arXiv:1209.1687
e N¢ = 2 Clover, R.Hosley et al., arXiv:1302.2233
e Ny = 2 Clover, S. Capitani et al. arXiv:1205.0180
® Ny = 2 + 1 Clover, B. J. Owen et al., arXiv:1212.4668
® Ny =2+ 1 4 1 Mixed action (HISQ/Clover), T. Bhattacharya et al., arXiv:1306.5435
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Disconnected quark loop contributions

Notoriously difficult

@ L(Xins) = Tr [[ G(Xins; Xins)] — need quark propagators from all Xi,s or
L3 more expensive as compared to the calculation of hadron masses

(Fo. to)

@ Large gauge noise — large statistics

@ Use special techniques that utilize stochastic noise on all spatial lattice sites — N, more expensive that
hadron masses with N, < L3

@ Reduce noise by increasing statistics
— take advantage of graphics cards (GPUs) — need to develop special multi-GPU codes
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Disconnected quark loop contributions
Notoriously difficult

@ L(Xins) = Tr [[ G(Xins; Xins)] — need quark propagators from all X;,s or

L3 more expensive as compared to the calculation of hadron masses " T
. - (&, n).<—<—<—>. (o, to)
@ Large gauge noise — large statistics - -
~— "

@ Use special techniques that utilize stochastic noise on all spatial lattice sites — N, more expensive that
hadron masses with N, < L®

@ Reduce noise by increasing statistics
— take advantage of graphics cards (GPUs) — need to develop special multi-GPU codes

A Fermi card

Cluster of 8 nodes of
Fermi GPUs at the
Cyprus Institute

C. A., M. Constantinou, S. Dinter, V. Drach, K. Hadjiyiannakou, K. Jansen, G. Koutsou, A. Strelchenko, A. Vaquero arXiv:1211.0126
C.A., K. Hadjiyiannakou, G. Koutsou, A. O'Cais, A. Strelchenko, arXiv:1108.2473
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Axial charge ga
To compute AX9 we need also the isoscalar g3 * d
Dedicated high statistics study

Choose one ensemble to perform a high statistics analysis for all disconnected contributions to nucleon
observables

Nf =2+ 1+ 1 twisted mass, a = 0.082 fm, m,. = 373 MeV, ~ 150, 000 statistics (on 2300 confs)
For the light, strange and charm loops we needed: 1.2 M2070 GPU-years or about 1.4 Tflop/s-months
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Disconnected isoscalar, agrees with Balii et a1 (QCDSF), Strange quark loop
Phys.Rev.Lett. 108 (2012) 222001
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Methods

EigCG (A. Stathopoulos & K. Orginos, SIAM J. Sci. Comput. 32 (2010) 439-462)
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Accumulate EVs with every new rhs

> Approximate, lowest eigenvectors

> Used to provide next CG starting vector

» Speed-up in number of iterations ~3.5

> Speed-up in runtime depends on total rhs, e.g. ~3 for Ny,s = 150
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Methods

Further gains by using relaxed numerical precision
> Solver accuracy typically set much smaller than statistical accuracy
> Mixed precision
* Compute Nyp (expensive) correlation functions to full-precision C"
* Compute Nip (cheap) correlation functions to low-precision C*

* Improved estimator:
1 Nyp 1 NLp

H L 7 L
(c —c,-)+NLP;c,

C'=—
Nup

~ —1 — 1
> Error scales as T namely e < /2(1 —r) + N

with r ~ 1 the correlation between C!', CF
» Truncated Solver Method:

G. Bali, S. Collins & A. Schafer, Comput. Phys. Commun. 181 (2010) 1570
» Covariant Approximation Averaging:

T. Blum et al., Phys. Rev. D88 (2013) 094503
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Methods
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Combined EigCG and CAA

> Small number of full-precision correlators
> Relaxed-precision correlators 5x faster than full-precision EigCG
> Improvements due to combined EigCG+CAA ~ x10
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Interest in a CoE

As Simulation Lab we would have interest in the following WPs:

WP1 - Community software development

WP2 - New algorithms for large-scale simulations

WP3 - Languages and programming models for heterogeneous architectures
Some hardware related

Would like to see an application-focused WP related to Lattice QCD
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