Expression of Interest for a Centre of Excellence

C. Alexandrou University of Cyprus and The Cyprus Institute

Edinburgh, April 14, 2014

The Cyprus Institute: Computation-based Science and Technology research center (CaSToRC)

CaSToRC:

- Promotes High Performance Computing and Computational Sciences in Cyprus and through the EU infrastructure project LinkSCEEM, in the Eastern Mediterranean region.
- Activities include:
 - Operation of the national supercomputing facility of Cyprus
 - Representation of Cyprus to PRACE leads Lattice QCD applications in WP8 of PRACE-2IP and WP7 of PRACE-3IP, participates in prototyping in WP9 of PRACE-2IP and WP11 of PRACE-2IP
 - A PhD program in computational sciences
 - Training courses in HPC and code development
 - A Simulation Lab in Nuclear and Particle Physics with JSC and DESY-Zeuthen

Group at CaSToRC collaborates closely with the one at the University of Cyprus

Scientific areas of interest

- Hadron structure need exascale for attaining 1% precision at physical point
- Algorithms and code development
- Lattice Perturbation theory
- Topology and simulation of SU(N)

Systematic uncertainties

For precision hadron physics:

- Finite lattice spacing a take the continuum limit $a \rightarrow 0$
- Finite volume L take infinite volume limit $L \rightarrow \infty$
- Identification of hadron state of interest or excited state contributions g_A , $\langle x \rangle$ and nucleon σ -terms
- Simulation at physical quark masses now feasible
- Inclusion of quark loop contributions in hadronic observables now feasible

⇒ exascale computer resources

Computational resources

Report on Nuclear Physics, Extreme Computing, Washington D.C., USA, Jan. 26-28, 2009.

Computational resources

Report on Nuclear Physics, Extreme Computing, Washington D.C., USA, Jan. 26-28, 2009.

Computational resources

Report on Nuclear Physics, Extreme Computing, Washington D.C., USA, Jan. 26-28, 2009.

Axial charge g_A

Axial-vector FFs: $A^3_{\mu} = \bar{\psi}\gamma_{\mu}\gamma_5 \frac{\tau^3}{2}\psi(x) \Longrightarrow \frac{1}{2}\bar{u}_N(\vec{p'}) \left[\gamma_{\mu}\gamma_5 G_A(q^2) + \frac{q^{\mu}\gamma_5}{2m}G_P(q^2)\right] u_N(\vec{p})|_{q^2=0}$ \rightarrow yields $G_A(0) \equiv g_A$: i) well known experimentally, & ii) no quark loop contributions

 $N_f = 2 + 1 + 1$ twisted mass, a = 0.082 fm, $m_{\pi} = 373$ MeV, 1200 confs

- No detectable excited states contamination
- Consistent results between summation and plateau methods

For this study we used PRACE Tier-0 resources (JUQUEEN): 1.7 Tflops-years sustained making use of EigCG \rightarrow about 500 Tflops-years at the physical point for the same calculation keeping *a* the same and doubling *L*

Axial charge g_A

Axial-vector FFs: $A^3_{\mu} = \bar{\psi}\gamma_{\mu}\gamma_5 \frac{\tau^3}{2}\psi(x) \Longrightarrow \frac{1}{2}\bar{u}_N(\vec{p'}) \left[\gamma_{\mu}\gamma_5 G_A(q^2) + \frac{q^{\mu}\gamma_5}{2m}G_P(q^2)\right] u_N(\vec{p})|_{q^2=0}$ \rightarrow yields $G_A(0) \equiv g_A$: i) well known experimentally, & ii) no quark loop contributions

We needed 5.5 Tflops-years for 6% in g_A at the physical point with L = 48 and $a \sim 0.1$ fm $\rightarrow \sim 200$ Tflop/s-years for 1% error at sink-source separation of 1.1 fm

Results from ETMC, C.A., M. Constantinou, S. Dinter, V. Drach, K. Jansen, C. Kallidonis, G. Koutsou, arXiv:1303.5979

- Results at physical pion mass are now becoming available → need a dedicated study with high statistics, a larger volume and 3 lattice spacings
- A number of collaborations are engaging in systematic studies, e.g.
 - N_f = 2 + 1 Clover, J. R. Green *et al.*, arXiv:1209.1687
 - N'_f = 2 Clover, R.Hosley *et al.*, arXiv:1302.2233
 - N'_f = 2 Clover, S. Capitani et al. arXiv:1205.0180
 - N_f = 2 + 1 Clover, B. J. Owen et al., arXiv:1212.4668
 - N_f = 2 + 1 + 1 Mixed action (HISQ/Clover), T. Bhattacharya et al., arXiv:1306.5435

Disconnected quark loop contributions

Notoriously difficult

- L(x_{ins}) = Tr [ΓG(x_{ins}; x_{ins})] → need quark propagators from all x_{ins} or L³ more expensive as compared to the calculation of hadron masses
- Large gauge noise → large statistics

- Use special techniques that utilize stochastic noise on all spatial lattice sites $\rightarrow N_r$ more expensive that hadron masses with $N_r \ll L^3$
- Reduce noise by increasing statistics ⇒ take advantage of graphics cards (GPUs) → need to develop special multi-GPU codes

Disconnected quark loop contributions

Notoriously difficult

- L(x_{ins}) = Tr [ΓG(x_{ins}; x_{ins})] → need quark propagators from all x̄_{ins} or L³ more expensive as compared to the calculation of hadron masses
- Large gauge noise \rightarrow large statistics

- Reduce noise by increasing statistics
 - \Longrightarrow take advantage of graphics cards (GPUs) \rightarrow need to develop special multi-GPU codes

A Fermi card

Cluster of 8 nodes of Fermi GPUs at the Cyprus Institute

C. A., M. Constantinou, S. Dinter, V. Drach, K. Hadijyiannakou, K. Jansen, G. Koutsou, A. Strelchenko, A. Vaquero arXiv:1211.0126 C.A., K. Hadijyiannakou, G. Koutsou, A. O'Cais, A. Strelchenko, arXiv:1108.2473

Axial charge g_A

To compute $\Delta \Sigma^q$ we need also the isoscalar g_A^{u+d}

Dedicated high statistics study

Choose one ensemble to perform a high statistics analysis for all disconnected contributions to nucleon observables

 $N_f = 2 + 1 + 1$ twisted mass, a = 0.082 fm, $m_{\pi} = 373$ MeV, $\sim 150,000$ statistics (on 2300 confs) For the light, strange and charm loops we needed: 1.2 M2070 GPU-years or about 1.4 Tflop/s-months

Methods

EigCG (A. Stathopoulos & K. Orginos, SIAM J. Sci. Comput. 32 (2010) 439-462)

Accumulate EVs with every new rhs

- Approximate, lowest eigenvectors
- Used to provide next CG starting vector
- Speed-up in number of iterations ~3.5
- Speed-up in runtime depends on total rhs, e.g. \sim 3 for $N_{\rm rhs} = 150$

Methods

Further gains by using relaxed numerical precision

- Solver accuracy typically set much smaller than statistical accuracy
- Mixed precision
 - * Compute $N_{\rm HP}$ (expensive) correlation functions to full-precision C^{H}
 - * Compute N_{LP} (cheap) correlation functions to low-precision C^{L}
 - Improved estimator:

$$C^{\mathrm{I}} = rac{1}{N_{\mathrm{HP}}}\sum_{i}^{N_{\mathrm{HP}}}(C^{\mathrm{H}}_{i}-C^{\mathrm{L}}_{i}) + rac{1}{N_{\mathrm{LP}}}\sum_{j}^{N_{\mathrm{LP}}}C^{\mathrm{L}}_{j}$$

• Error scales as
$$\sim \frac{1}{\sqrt{N_{LP}}}$$
, namely $e \propto \sqrt{2(1-r) + \frac{1}{N_{LP}}}$

with $r \simeq 1$ the correlation between $C_i^{\rm H}$, $C_i^{\rm L}$

Truncated Solver Method:

G. Bali, S. Collins & A. Schafer, Comput. Phys. Commun. 181 (2010) 1570

 Covariant Approximation Averaging: T. Blum et al., Phys. Rev. D88 (2013) 094503

Methods

Combined EigCG and CAA

- Small number of full-precision correlators
- Relaxed-precision correlators 5× faster than full-precision EigCG
- Improvements due to combined EigCG+CAA $\simeq \times 10$

As Simulation Lab we would have interest in the following WPs:

- WP1 Community software development
- WP2 New algorithms for large-scale simulations
- WP3 Languages and programming models for heterogeneous architectures
- Some hardware related
- Would like to see an application-focused WP related to Lattice QCD
- ...