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Introduction

• The Carroll limit is the speed of light to zero contraction of
the Poincaré group. [Lévy-Leblond, 1965]

• In this limit you can ‘run’ (boost yourself) without moving in
space.

• Reminiscent of the Red Queen’s race from Lewis Carroll’s
Through the Looking-Glass.

• What happens when we expand a relativistic theory around
c = 0 and is it good for anything?
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Introduction

• The Carroll group is a kinematical group and it is possible to
define Carrollian manifolds.

• Carrollian manifolds admit vielbeine that transform under
local Carroll boosts (as opposed to local Lorentz boosts).
[Bekaert, Morand, 2015], [JH, 2015], [Figueroa-O’Farrill, Prohazka, 2018]

• Null hypersurfaces are examples of Carrollian manifolds
and this includes null infinity of asymptotically flat
spacetime. [Duval, Gibbons, Horvathy, 2014]
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Introduction

• An incomplete list of examples where Carroll symmetries
emerge:

◦ black hole membrane paradigm [Donnay, Marteau, 2019], [Penna, 2018]

◦ ‘flat space holography’ (Carroll perspective so far only in 3D)
[Bagchi, Detournay, Fareghbal, Simón, 2012], [JH, 2015], [Ciambelli, Marteau,

Petkou, Petropoulos, Siampos, 2018]

◦ tensionless limits of strings [Bagchi, 2013]

◦ limits of GR [Henneaux, 1979], [Bergshoeff, Gomis, Rollier, ter Veldhuis, 2017]

◦ Inflationary cosmology [de Boer, JH, Obers, Sybesma, Vandoren, to appear]

◦ and generally whenever there is an effective speed of light
that is much smaller than the velocity of concern
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Outline

• Carroll symmetries

• Field theories

• Fluids and cosmology

• Geometry: c = 0 expansions and null hypersurfaces

• Null infinity and a boundary stress tensor for I+ in 3D
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The Carroll limit

• Lorentz transformations with parameter ~β:

ct′ = γ(ct− ~β · ~x) , γ = (1− ~β2)−1/2

~x′‖ = γ(~x‖ − ~βct) , ~x′⊥ = ~x⊥

• Carroll limit: ~β = c~b, rescale c → εc and ε → 0 with ~b fixed.

Carroll transformation: t′ = t−~b · ~x , ~x′ = ~x

• Space is absolute and time is relative.

• No Lorentz contraction or time dilation as γ → 1 in the
Carroll limit.
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The Carroll limit

• If a Carroll observer measures time and space differences ∆t
and ∆~x between two events, then a boosted Carroll observer
measures the same distance, but a time difference

∆t′ = ∆t−~b ·∆~x.

• If ~b is large enough ∆t′ < 0 while ∆t > 0, i.e. two observers do
not necessarily agree on which event happened first.

• Coordinate time is not a good clock to describe the motion of a
particle. Instead we use proper time, the affine parameter
along the worldline.

• Velocities transform by rescaling ~v′ = d~x′

dt′ = ~v

1−~b·~v

• ~v = 0 and ~v 6= 0 are not related by a Carroll boost: either you
stand still or you always move.
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Carroll metric

• Spatial distances are Carroll invariant:

ds2 = −c2dt2 + d~x2 → h = d~x2

• At a fixed point in space you can measure time intervals.

• Limit of inverse Poincaré metric tells us that v = ∂
∂t is Carroll

invariant.

• The light cone −c2t2 + ~x2 = 0 becomes the line ~x = 0 for all t:
light is not moving in space!
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Carroll algebra

• Lorentz transformation of energy and momentum:

E′ = γ(E − c~β · ~p) , ~p ′
‖ = γ

(

~p‖ − ~β
E

c

)

, ~p ′
⊥ = ~p⊥

• Carroll limit: ~β = c~b, rescale c → εc and ε → 0 with ~b fixed.

Carroll transformation: E′ = E , ~p ′ = ~p−~bE

• The Carroll algebra is spanned by H,Pi, Ci, Jij with the

nonzero brackets (i, j = 1, . . . , d):

[Pi, Cj ] = δijH , [Jij , Pk] = 2δk[iPj] , [Jij , Ck] = 2δk[iCj]

[Jij , Jkl] = −2δi[kJl]j + 2δj[kJl]i

• The Hamiltonian is a central element.
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Current conservation

• On shell conserved currents for a field theory with Carroll
symmetries:

∂µ (T
µ
νK

ν) = 0

• Tµ
ν is the energy-momentum tensor and Kν is one of the

generators:

H = ∂t , Pi = ∂i , Ci = xi∂t , Jij = xi∂j − xj∂i

These are the ‘Killing’ vectors of the Carroll metric data: v = ∂t
and h = δijdx

idxj .

• This implies:

∂µT
µ
ν = 0 , T i

t = 0 , T i
j = T j

i

• We conclude that the energy flux T i
t must vanish!
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No energy flux

• The vanishing of the energy flux also follows from the c → 0

limit of the relativistic property 1
cT

i
t + cT t

i = 0.

• It follows that ∂tT
0
0 = 0 or d

dt

∫

V ddxT 0
0 = 0 for any volume V .

• Contrast this with d
dt

∫

V ddxT 0
0 = −

∫

∂V dd−1xniT
i
0.

• Single particle: if the energy is nonzero it cannot move and if it
can move the energy must be zero.
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Irreps of the Carroll algebra (d = 3)

• Eigenstates of H and the quartic Casimir WiWi

Wi = HSi + εijkCjPk

• Consider energy-momentum eigenstates (E, pi) of H and Pi.

• When E 6= 0 we can always go to a frame where pi = 0 by
performing a Carroll boost. In this case the little group is SO(3)

and the eigenvalues of WiWi are E2s(s+ 1) with

s = 0, 1/2, 1, . . ..

• When E = 0 the momentum pi is Carroll boost invariant. Using
a rotation we can WLOG set ~p = pê3. On such states
Wi = εijkCjPk so that W3 = 0. The little group is ISO(2)

generated by W1,W2, L where L = PiSi (helicity).
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Carroll field theory

• Consider a relativistic field theory:

L =
1

2c2
φ̇2 − 1

2
(∂iφ)

2 − V (φ)

• Sending c → 0 (and rescaling L) gives

L =
1

2
φ̇2 − Ṽ (φ)

where Ṽ is whatever is left of the potential in the limit.

• For Ṽ a quadratic potential this corresponds to the E 6= 0 irrep.

• The energy flux vanishes due to missing gradient term.
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Carroll field theory

• Rewrite the relativistic theory as

L = χφ̇− c2

2
χ2 − 1

2
(∂iφ)

2 − V (φ)

• Sending c → 0 leads to

L = χφ̇− 1

2
(∂iφ)

2 − Ṽ (φ)

• The latter is Carroll boost invariant under

δφ = ~b · ~xφ̇ , δχ = ~b · ~xχ̇+~b · ~∂φ

• χ is a Lagrange multiplier for φ̇ = 0. This corresponds to the
E = 0 irrep.

• The energy flux vanishes on shell due to the constraint φ̇ = 0.
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Electric Carroll

• Electric c → 0 limit of Maxwell:

L =
1

2
EiEi , Ei = ∂iAt − ∂tAi

• This is Carroll invariant under: δAt = ~b · ~x∂tAt and

δAi = ~b · ~x∂tAi + biAt.

• Energy-momentum tensor:

T t
t = −1

2
EiEi , T i

t = 0 , T t
j = ( ~E × ~B)j , T i

j = −EiEj +
1

2
δijE

2

• EOM:

∂iBi = 0 , ∂tBi +
(

~∇× ~E
)

i
= 0

∂iEi = 0 , ∂tEi = 0 Ampère’s law without ~∇× ~B term
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Magnetic Carroll

• Magnetic c → 0 limit of Maxwell:

L = χiEi −
1

2
BiBi , Ei = ∂iAt − ∂tAi , Bi =

(

~∇× ~A
)

i

• χi is a Lagrange multiplier transforming under Carroll boosts as

δχi = ~b · ~x∂tχi +
(

~b× ~B
)

i
.

• Energy-momentum tensor:

T t
t = −1

2
BiBi , T i

t = 0 , T t
j = (~χ× ~B)j , T i

j = −BiBj +
1

2
δijB

2

• EOM (χi plays the role of the electric field):

∂iBi = 0 , ∂tBi = 0 Faraday without ~∇× ~E term

∂iχi = 0 , ∂tχi −
(

~∇× ~B
)

i
= 0
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Carroll fields in 2D

• In 1 + 1 dimensions the Carroll algebra admits a central
extension allowing for more interesting theories.

• For i, j = 1, . . . , 2n and ωij a constant antisymmetric invertible

matrix consider

L =
1

2
∂τX

i∂τX
j − ωijX

i∂σX
j

• This is Carroll invariant with δXi = bσ∂τX
i − bτωijX

j .

• This model can be obtained as a gauged fixed version of a
Polyakov-type theory for a closed string whose worldsheet is
Carrollian. [Bidussi, Harmark, JH, Obers, Oling, to appear]
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Carroll perfect fluids

• The most general perfect fluid is (in LAB frame) [de Boer, JH, Obers,

Sybesma, Vandoren, 2017]

T t
t = −E , T i

t = − (E + P ) vi , T t
j = Pj , T i

j = Pδij+viPj

• Momentum density Pi = ρvi

• All functions depend on the fluid variables: T and vi.

• From the transformation of Tµ
ν under diffeos we conclude that

Pi = ρvi transforms under a Carroll boost as

P ′
i = ρ′v′i = ρ′

vi

1−~b · ~v
= ρvi(1−~b · ~v)− bi (E + P )

• Hence we need E + P = 0 for any Carroll fluid!

• Reminiscent of the equation of state in cosmology (w = −1).
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Cosmology

• Hubble law: v = Hd

• Hubble radius: RH = cH−1

• If distances d are much larger than RH we have v ≫ c.

• super-Hubble scales are Carrollian

• As c → 0, the Hubble radius vanishes, so the entire universe
becomes super-Hubble, i.e. Carrollian.

• This is an ultra-local limit.

• As we expand away from c = 0, Hubble cells grow containing
more and more d.o.f.

• Expanding inflationary solutions around c = 0 naturally leads to
small slow roll parameters.
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Expanding GR around c = 0

• A convenient way to make the c-dependence of GR manifest

is to write gµν = −c2TµTν +Πµν and gµν = − 1
c2T

µT ν +Πµν .

• Signature of Πµν is (0, 1, . . . , 1).

• Light cones in tangent space have slope 1/c:

Ea
µ (spatial vielbeins labelled by a)

Tµ

1/c
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Expanding GR around c = 0

• Expanding the vielbeine in a Taylor series in c2 gives:

Tµ = τ +O(c2) , Πµν = hµν + c2Φµν +O(c4)

Tµ = vµ + c2Mµ +O(c4) , Πµν = hµν +O(c2)

• Hence the metric and its inverse are:

gµν = hµν + c2 (Φµν − τµτν) +O(c4)

gµν = − 1

c2
vµvν + hµν − 2v(µMν) +O(c2)

• Expanding the local Lorentz transformation that act on Tµ and

Πµν in c2 we obtain the local Carroll transformations (τµλ
µ = 0):

δτµ = hµνλ
ν , δMµ = λµ , δhµν = 2v(µλν) , δΦµν = 2τ(µλν)
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• The measure expands as
√−g = ce

(

1 +O(c2)
)

where

e = det (τµ , e
a
µ) with hµν = δabe

a
µe

b
ν (a, b = 1, . . . , d).

• Einstein–Hilbert plus matter: L = c3

16πG

√−gR+ Lmat

• It can be shown that R = O(c−2) so that Lmat must be O(c2).

• In order that δLmat =
1
2c

√−gTµνδgµν = O(c2) we must have

Tµν = −T vµvν + c2T µν +O(c4) and then

δLmat = c2e

(

−T vµδτµ +
1

2

(

T µν + 2T v(µMν)
)

δhµν +O(c2)

)

• The Carroll EMT is then

T µ
ν = −T vµτν +

(

T µρ + 2T v(µMρ)
)

hρν

• Agrees with known examples and obeys the no energy flux
condition: hµρv

νT µ
ν = 0.
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Null hypersurfaces

• The metric structure on any null hypersurface is Carrollian.

• Most general metric for which u = cst is a hypersurface:

ds2 = 2du (Φdu− τ̂µdx
µ) + hµνdx

µdxν

Φ = −τµM
µ +

1

2
hµνM

µMν , τ̂µ = τµ − hµνM
ν

• Local Lorentz transformations that leave the normal 1-form du
invariant (null rotations) lead to local Carroll transformations.

• A sufficient condition for the ambient EMT TM
N to induce

Carroll transport on the null hypersurface is T u
ν = 0:

0 = ∇MTM
ν =

C
∇µT

µ
ν − 2

C
Γµ
[µρ]T

ρ
ν + 2

C
Γσ
[ρν]T

ρ
σ

for some suitably chosen Carrollian connection
C
∇µ.
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3D Asymptotically flat spaces

• Minkowski space-time in EF coordinates:

ds2 = −du2 − 2dudr + r2dϕ2; u is retarded time, r

parameter of null geodesics, ϕ angular coordinate.

• Asymptotically flat space-time in BMS gauge (large r

expansion) [Barnich, Compère, 2006]:

grr = r−2hrr +O(r−3) , guu = huu +O(r−1) ,

gru = −1 + r−1hru +O(r−2) , guϕ = huϕ +O(r−1) ,

grϕ = h1(ϕ) + r−1hrϕ +O(r−2) , gϕϕ = r2 + rhϕϕ +O(1) .

• Most general Taylor expansion for a flat boundary at

null infinity in 3D.
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• We generalize this by allowing for arbitrary sources: Φ,

τ̂µ, hµν (vanishing determinant).

grr = 2Φr−2 +O(r−3) ,

grµ = −τ̂µ + r−1h(1)rµ +O(r−2) ,

gµν = r2hµν + rh(1)µν + h(2)µν +O(r−1) .

• In terms of vielbeine ds2 = −2UV + EE the metric

boundary conditions are:

Ur = 1 +O(r−1) , Vµ = τµ +O(r−1)

Uµ = rU(1)µ +O(1) , Er = r−1eνM
ν +O(r−2)

Vr = r−2τµM
µ +O(r−3) , Eµ = reµ +O(1)

• Relation to the metric sources:

hµν = eµeν , τ̂µ = τµ−eµeνM
ν , Φ = −τµM

µ+
1

2
(eµM

µ)2

Carroll: to run or to stand still – p. 25/31



Null Infinity is described by Carrollian geometry

• Consider bulk local Lorentz transformations that keep

the normal U fixed. These act on the boundary

vielbeins as Carroll boosts, i.e.

e′µ = eµ , τ ′µ = τµ+λeµ , M ′µ = Mµ+λeµ+
1

2
λ2vµ .

• Together with near boundary bulk diffeomorphisms

these generate all the local symmetries acting on the

sources τµ, eµ and Mµ.

• It can be shown that the Mµ source is pure gauge.
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Well-posed variational problem

• Bulk plus Gibbons–Hawking boundary terms at I+:

S =

∫

d3x
√
−gR+ α

∫

I+

1

2
ǫMNPdx

M ∧ dxNV P
(

ERES∇RUS

)

• The GH term at I+ is the unique term that is invariant

under: i). bulk local Lorentz transformations that leave

U invariant and ii). bulk local Lorentz transformations

that act as δUM = λ̄UM , and δVM = −λ̄VM . The last

symmetry is special for null hypersurface orthogonal

vectors.

• We will demand that δS is finite i.e. O(1) in r and that it

is zero when the variations of the sources vanish at I+.
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• Variation of the bulk action:

δSbulk = −1

2

∫

∂M

ǫMNPdx
M ∧ dxNV PUQJ

Q

where JP = gMNδΓP
MN − gMP δΓN

NM .

• No counterterm to cancel leading divergence at r2.

Need to set ∂µeν − ∂νeµ = 0 to remove divergence.

• We then find at O(1):

1

2
ǫMNPdx

M ∧ dxNV PUQJ
Q|∂M = ed2x

(

− T µδτµ

+
1

2
T µνδhµν +O(r−1)

)

• We thus do not need the GH boundary term, i.e. α = 0.
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Well-posed variational problem

• Local Carroll boost invariance leads to hµρv
νT µ

ν = 0.

• Demanding invariance under boundary diffeos we find

the Ward identity:
c

∇µT µ
ν − 2

c

Γµ
[µρ]T ρ

ν + 2
c

Γρ
[µν]T µ

ρ = 0

where we defined T µ
ν = −T µτν + T µρhρν .

• Hit the diffeo Ward identity with any vector K:

e−1∂µ (eK
νT µ

ν) + T µLKτµ −
1

2
T µνLKhµν = 0
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BMS Symmetries

• When the boundary is flat any solution to

LKτµ = Ωτµ + hµνζ
ν , LKhµν = 2Ωhµν

gives rise to a conserved current.

• Here vµ∂µΩ = 0 due to the constraint ∂µeν − ∂νeµ = 0.

Recall hµν = eµeν .

• The resulting ‘Killing’ vectors K are

Kϕ = f(ϕ) , Ku = f ′(ϕ)u+ g(ϕ) ,

Ω = f ′(ϕ) , ζu = 0 , ζϕ = f ′′(ϕ)u+ g′(ϕ) .

which generate the BMS algebra.
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Outlook

• Carroll strings

• Tensionless strings

• 4D asymptotically flat spacetimes

• Expansions around c = 0 and cosmology

• Carroll fluids: applications to supersonic behaviour?
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