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A new basis for the S-matrix.

pi = ϵiωi (1+ ziz̄i, zi + z̄i,−i(zi − z̄i), 1+ ziz̄i)

zi, z̄i are complex coordinates on the celestial sphere.
The Celestial amplitude

Ãn (∆i, zi, z̄i) =
∫ dω1

ω1
. . .

dωn
ωn

ω∆1
1 . . . ω∆n

n An(ωi, zi, z̄i)

transforms as a correlation function of n operators with (∆i, Ji).

Ãn

(
∆i,

azi + b
czi + d ,

āz̄i + b̄
c̄z̄i + d̄

)
=

n∏
i=1

[
(czi + d)∆i+Ji (c̄z̄i + d̄

)∆i−Ji
]
Ãn (∆i, zi, z̄i)

Pasterski, Shao, Strominger
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(Conformally) soft limits

lim
∆i→−k

(∆i + k)Ãn =

∫
dωi

(
lim

∆i→−k
(∆i + k)ω∆i+k−1

i

)
ω−k
i An

= Resωi→0ω
−k−1
i An

Donnay, Puhm, Strominger

Celestial amplitudes have an infinite number of poles as ∆i → −k for
k ∈ Z

The gluon operators turn into currents in this limit

lim
∆i→−k

(∆i + k)O+,a = Rk,a

The infinite number of soft currents form a closed algebra.

Guevara, Himwich, Pate, Strominger

Celestial amplitudes exhibit interesting behaviour in the ∆ → −k
limit. 2



Part 1: Soft singularities and polytopes
Based on work in progress with Lecheng Ren, Mark Spradlin and Anastasia
Volovich

Part 2: Soft singularities and differential equations
Based on 2106.16111 with Yangrui Hu, Lecheng Ren
and Anastasia Volovich
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Soft singularities and polytopes



Positive geometries

Scattering amplitudes in momentum space have been reformulated
in terms of positive geometries for some theories

The Amplituhedron in N = 4 SYM and the Associahedron in biadjoint
Tr[ϕ3] theory

Arkani-Hamed, Bai, He, Yan, Trnka

Positive geometries also appear in EFTs, CFTs, cosmology

Arkani-Hamed, Baumann, Benincasa, Huang, Lee, Pimentel, Postnikov, Shao
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Tr[ϕ3]

Tree-level Feynman diagrams in Tr[ϕ3] are in a one to one
correspondence with the triangulations of a polygon.

Figure 1: n = 5 with orderings (1234|1234)

Arkani-Hamed, Bai, He, Yan
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Associahedron

The (complete) triangulations of a polygon are the vertices of a
polytope called the Associahedron or Stasheff polytope

Stasheff, Tamari

Figure 2: Associahedron for n = 5

This dictates what poles can appear together in the amplitude
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N = 4 super Yang-Mills

A6
(
1−, 2−, 3−, 4+, 5+, 6+

)

=
⟨1345⟩3

⟨1234⟩⟨1245⟩⟨2345⟩⟨1235⟩

+
⟨1356⟩3

⟨1235⟩⟨1256⟩⟨2356⟩⟨1236⟩
Hodges

The amplitude can be interpreted as the volume of the tetrahedron
The poles in the amplitude correspond to the faces of the
tetrahedron
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Singularities and geometry

The singularities of amplitudes are intimately tied to the facet
structure of geometries

In momentum space amplitudes, can be interpreted as dlog forms
on the geometries

Interesting to understand what role geometries play in Celestial
amplitudes.

Celestial amplitudes have two distinct types of singularities
singularities in ∆ and singularities in z

The focus of this section will be on the singularities in ∆ in MHV tree
level gluon amplitudes
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MHV amplitudes in momentum space

The tree level MHV amplitude is given by the Parke-Taylor formula

An
(
1−, 2−, 3+, . . .n+

)
=

⟨12⟩4 δ(4)
(∑n

i=1 pi
)

⟨12⟩⟨23⟩ · · · ⟨n1⟩ .

A parametrization suitable for celestial amplitudes is

λα
i = ϵi

√
2ωi

(
1
zi

)
, λi,α = ϵi

√
2ωi

(
−zi
1

)
,

λ̃i,α̇ =
√
2ωi

(
−z̄i
1

)
, λ̃α̇

i =
√
2ωi

(
1
z̄i

)
,

⟨i j⟩ = − 2ϵiϵj
√
ωiωj zij , [i j] = 2√ωiωj z̄ij .
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Mellin transform of the MHV amplitudes

Ãn
(
1−, 2−, . . . ,n+

)
=

z412
z12z23 . . . zn1

∫ n∏
i=1

dωi
ωi

ω∆i

(
ω1ω2

ω3 . . . ωn

)
δ(4)

( n∑
i=1

pi

)

Integrate out an overall scale produces a delta function∫ dω1
ω1

ω
(
∑n

i=1 ∆i−1)
1 = δ

( n∑
i=1

(∆i − 1)
)

An (t 1−, t 2−, . . . , t n+) = t−nAn ( 1−, 2−, . . . , n+)
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Mellin transform of the MHV amplitudes

We use the momentum conserving delta function to solve for
ωn−3, ωn−2, ωn−1, ωn.

δ(4)

( n∑
i=1

pi

)
=
1
U

n∏
b=n−3

δ (ωb − ω∗
b)Θ (ω∗

b)

ω∗
b =

n−3∑
a=1

xa,bωa

where

pi = ϵiωiqi(zi, z̄i) xa,b = −
ϵa Ua,b
ϵb U

U = det{qn−3,qn−2,qn−1,qn}, Ua,b = det{qn−3,qn−2,qn−1,qn}|b→a
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n>4 point MHV amplitudes

ÃMHV
n =N (zi, z̄i)

∏
a,b

Θ
(
xa,b
)
δ

(∑
i

(∆i − 1)
)
×

∫ (n−4∏
c=2

duc
uc

) (n−4∏
a=2

u∆a−Ja
a

) n∏
b=n−3

(n−4∑
a=2

xa,bua + x1,b

)∆b−Jb−1

Schreiber, Volovich, Zlotnikov

This is a multidimensional Mellin transform whose domain of
convergence is governed by a specific polytope
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Convergence of Mellin integrals

I (∆i, zi) =
∫ n∏

i=1

dωi
ωi

ω∆i
i

1
f(ωi)

The integral converges whenever ∆ = (∆1, . . .∆n) lies in the interior
of the Newton polytope of f.

0 ∈ N(f)−∆

It can be shown that I has an infinite number of poles (in ∆)
emanating from the facets of the Newton polytope.

It can be analytically continued past these poles.

Nilsson, Passare
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Newton Polytope -1D

f(z) =
∑
∆∈A

a∆z∆ a∆ ∈ C∗, z ∈ (C∗)n

The Newton polytope of f(z), denoted by N(f) is the Convex hull of A
in Rn

f(z) = a0 + a2z2 + a5z5

The Newton polytope of f is the interval (0, 5).
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Newton Polytope - 2D

f(z1, z2) = a0,0 + a1,0z1 + a0,1z2 + a2,2z1z2

The Newton polytope of f is the square with vertices
(0, 0), (0, 1), (1, 0), (1, 1).
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Convergence of Mellin integrals - example 1

Let f(z) = a+ bz. Its Mellin transform

f̃(∆) =

∫ ∞

0

dz
z z∆ 1

a+ b z

Converges for Re(∆) ∈ (0, 1). It can be analytically continued to

f̃(∆) = a∆−1b−∆Γ(∆)Γ(1−∆)

Poles emanating from endpoints of N(f) = (0, 1)
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Convergence of Mellin integrals - example 2

Let f(z) = 1+ z2 + z21 + z1z22. Its Mellin transform

f̃(∆) =

∫ ∞

0

dz1
z1
dz2
z2

z∆1
1 z

∆2
2

1
1+ z2 + z21 + z1z22
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Convergence of Mellin integrals - example 2

The equations of the facets are

Re(∆1) ≥ 0 Re(∆1)− Re(∆2) ≥ −1
− 2Re(∆1)− Re(∆2) ≥ −4 Re(∆2) ≥ 0

The analytic continuation will be of the form

Γ (∆1) Γ (∆1 −∆2 + 1) Γ (4− 2∆1 −∆2) Γ (∆2)Φ

In general, the arguments of the Gamma functions are determined
by the facets of the Newton Polytope. The integral has an analytic
continuation

I (∆i, zi) = Φ (∆i, zi)
Nf∏
k=1

Γ (nk ·∆−mk) .

The analytic continuation has poles on all hyperplanes emanating
from the Newton polytope. Here Φ is an entire function.
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n = 6 MHV tree

M̃tree
6 ∼ δ

( 6∑
i=1

(∆i − 1)
)∫ du2

u2
u∆2−J2
2

6∏
b=3

(
x2,bu2 + x1,b

)∆b−Jb−1

The integral converges when

Re(∆2 − J2) ∈
(
0,

6∑
b=3

Re(−∆b + Jb + 1))
)

The Gamma function that appear are

Γ (∆2 − J2) Γ
( 6∑
b=3

Re(−∆b + Jb + 1)− (∆2 − J2 − 1)
)

=Γ (∆2 − J2) Γ (∆1 − J1)
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Generic MHV tree

The analysis can be extended to any number of points for MHV
amplitudes.

The polytope defining the region of convergence is a simplex with
sides of length

n∑
b=n−3

Re(1+ Jb −∆b)

This implies that the MHV amplitude has singularities given by

n−4∏
i=1

Γ (∆i − Ji)
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Summary of part 1

We analyzed the domain of convergence of Mellin integrals.

The interior of the appropriate Newton polytope is the domain of
convergence of the Mellin integrals. It also dictates the pole
structure of their analytic continuations.

We applied this analysis to celestial MHV gluon amplitudes and
discovered that the n-point MHV amplitude is a simplex.

The singularities corresponding to the facets of this simplex are the
conformally soft singularities of the amplitude.
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Soft singularities and differential
equations



Hypergeometric differential equations

The behaviour of celestial amplitudes in the conformally soft limit
implies the existence of nontrivial differential equations.

ÃMHV
n =N (zi, z̄i)

∏
a,b

Θ
(
xa,b
)
δ

(∑
i

(∆i − 1)
)
×

∫ (n−4∏
c=2

duc
uc

) (n−4∏
a=2

u∆a−Ja
a

) n∏
b=n−3

(n−4∑
a=2

xa,bua + x1,b

)∆b−Jb−1

These are known to be integral representations of Aomoto-Gelfand
hypergeometric functions.
They satisfy the multivariate generalizations of the hypergeometric
differential equations.
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Hypergeometric differential equations

There are n hypergeometric differential equations. Four of these are
a direct consequence of momentum conservation

n∑
i=1

ϵi qµi e
∂

∂ ∆i ÃMHV
n = 0 .

The momentum operator acts non trivially because we have
integrated out the delta function.

n−4∑
a=1

xa,b
∂ Ãn

MHV

∂xa,b
= (∆b − Jb − 1) Ãn

MHV

b = 1, . . . 4

The remaining n− 4 arise as a consequence of GL(n− 4)
transformations on xa,b.
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Hypergeometric differential equations

ÃMHV
n =N (zi, z̄i)

∏
a,b

Θ
(
xa,b
)
δ

(∑
i

(∆i − 1)
)
×

∫ (n−4∏
c=2

duc
uc

) (n−4∏
a=2

u∆a−Ja
a

) n∏
b=n−3

(n−4∑
a=2

xa,bua + x1,b

)∆b−Jb−1

This is the result of using the momentum conserving delta function
to eliminate ωn−3, . . . ωn.

A different choice would lead to a similar integral with different xa,b

These are equivalent upto a GL(n− 4) transformation.
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Hypergeometric differential equations

There are n− 4 differential equations that encode the behaviour of
the amplitude under these GL(n− 4) transformations.

n∑
b=n−3

xa,b
∂ Ãn

MHV

∂xa,b
= − (∆a − Ja) Ãn

MHV

This completes the set of hypergeometric differential equations.

There are other differential equations that arise from the
conformally soft behaviour of celestial amplitudes whose
momentum space origins are more obscure.

Banerjee, Ghosh
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Leading soft current

MHV amplitudes are closed under soft limits

j+,a(z) = lim
∆→1

(∆− 1)O+,a(z, z̄)

The leading soft current j+,a is a Kac-Moody current and satisfies a
Ward identity

⟨
j+,a (z)

n∏
i=1

O+,ai (zi, z̄i)
⟩
= −

n∑
k=1

Tak
z− zk

⟨ n∏
i=1

O+,ai (zi, z̄i)
⟩

This is a restatement of the soft gluon theorem.

He, Mitra, Stominger
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Subleading soft currents

S+,a(z, z̄) = lim
∆→0

∆O+,a(z, z̄)

has its own Ward identity

⟨
S+,a (z, z̄)

n∏
i=1

O+,ai (zi, z̄i)
⟩

=−
n∑
k=1

ϵk
z− zk

(
−2h̄k + 1+ (z̄− z̄k)∂̄k

)
TakP

−1
k

⟨ n∏
i=1

O+,ai (zi, z̄i)
⟩

This is also the subleading soft gluon theorem.
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Constraint on OPE

We can extract the OPE between S+,a (z, z̄) and a hard gluon
O+,a (z1, z̄1)from the ward identity

S+,a (z, z̄)O+,a (z1, z̄1) ∼

 1
z− z1

(. . . ) +
∞∑
p=1

(z− z1)p−1 (. . . )

O+,a (z1, z̄1)

+ (z̄− z̄1)

 1
z− z1

(. . . ) +
∞∑
p=1

(z− z1)p−1 (. . . )

O+,a (z1, z̄1)

However, the OPE of two hard gluons is determined by asymptotic
symmetries/collinear limits
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Constraints on OPE

O+,a
∆1

(z, z̄)O+,b
∆2

(z1, z̄1) ∼ −iB(∆− 1,∆1 − 1)
[
fabc
z− z1

+
∆− 1

∆+∆1 − 2 f
abcL−1

+i ∆− 1
∆+∆1 − 2

(
δacδbe + δaeδbc

)
je−1
]
O+,c

∆+∆1−1 (z1, z̄1)

Ebert, Fan, Fotopoulos, Pate, Raclariu, Sharma, Strominger, Taylor, Wang, Yuan

The OPE of the subleading soft current with a hard gluon can be
computed by

S+,a (z, z̄)O+,a (z1, z̄1) = lim
∆→0

∆O+,a
∆ (z, z̄)O+,b

∆1
(z1, z̄1)

29



Null state equation

Equating the two gives us

Ψ ≡ DO+,a
∆1

(z1, z̄1) = 0

Ψ is a null state

L1Ψ = L̄1Ψ = j+,a
m Ψ = 0

Inserting this into a correlation function yields the differential
equation

⟨ΨOa2
∆2

. . .Oai
∆i

. . .Oan
∆n

⟩ = 0
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Null State equation

Tai
∂

∂zi
⟨Oa1

∆1
. . .Oai

∆i
. . .Oan

∆n
⟩

−
∑
j ̸=i

ϵiϵj
∆j − Jj − 1+ z̄ji∂̄j

zji
Taj ⟨O

a1
∆1

. . .Oaj
∆j−1

. . .Oai
∆i+1

. . .Oan
∆n

⟩

−
∑
j ̸=i

Taij
zji

⟨Oa1
∆1

. . .Oa
∆i

. . .Oan
∆n

⟩ + ∆i
∑
j ̸=i

Taj
zji

⟨Oa1
∆1

. . .Oai
∆i

. . .Oan
∆n

⟩ = 0 .

Banerjee, Ghosh

One equation for each positive helicity gluon

No obvious momentum space origin.

Easier to deal with colour ordered amplitudes
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Colour ordered amplitudes

Colour decomposition

An =
∑

π∈Sn−1

An[1, π(2), π(3), . . . , π(n)]Tr[Ta1Taπ(2) · · · Taπ(n) ] ,

Gluon amplitudes can be decomposed into a basis of colour ordered
amplitudes

Each colour ordered amplitude is gauge invariant and is given by the
Parke-Taylor formula
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Null state equations for colour ordered amplitude

The null state equation reduces to a simpler form on colour ordered
amplitudes.

For the canonical ordering 1, . . .n, we get(
∂i −

∆i
zi−1,i

− 1
zi+1,i

)
Ãn(1, · · · ,n)

+

(
ϵiϵi−1

∆i−1 − Ji−1 − 1+ z̄i−1,i∂̄i−1
zi−1,i

e
∂

∂∆i
− ∂

∂∆i−1

)
Ãn(1, · · · ,n) = 0 ,
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Null state equation from BCFW shifts

(
∂i −

∆i
zi−1,i

− 1
zi+1,i

)
Ãn(1, · · · ,n)

+

(
ϵiϵi−1

∆i−1 − Ji−1 − 1+ z̄i−1,i∂̄i−1
zi−1,i

e
∂

∂∆i
− ∂

∂∆i−1

)
Ãn(1, · · · ,n) = 0 ,

We can rewrite this in momentum space compactly as(
λα
i−1

∂

∂λα
i
− λ̃α̇

i
∂

∂λ̃α̇
i−1

)
An =

⟨i− 1 i+ 1⟩
⟨i+ 1 i⟩ An ,

The LHS implements an infinitesimal of λi andλ̃i−1.

λi → λ̂i = λi + ϵλi−1 λ̃i−1 → ˆ̃λi−1 = λ̃i−1 − ϵλ̃i
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BCFW shift

λi → λ̂i = λi + ϵλi−1 λ̃i−1 → ˆ̃λi−1 = λ̃i−1 − ϵλ̃i

We recognize this as an infinitesimal BCFW shift.

It preserves momentum conservation

λi
ˆ̃λi−1 + λ̂iλ̃i = λi−1λ̃i−1 + λiλ̃i
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Summary of part 2

We identified the momentum space origins for hypergeometric
equations satisfied by celestial amplitudes.

We derived the null state equations satisfied by colour ordered
amplitudes

These equations were seen to correspond to infinitesimal BCFW
shifts.
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Outlook

• Extensions of the polytopal structure of singularities in ∆ extend
beyond the MHV tree sector.

• Can we “import” any of the geometric structures from
momentum space amplitudes?

• Is there a more fundamental principle which explains the
connection between BCFW shifts and null state equations?

• What is the structure of the conformally soft limit beyond the
MHV sector? Understand the interplay between positive and
negative helicities.
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Thank you for your attention!
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