Emergence and Non-Equilibrium in Strongly Correlated Electron Systems

Christian Pfleiderer

Physik-Department Technische Universität München

Instructions

- Main scientific goals of our research area
- Key challenges 20 years ago
 - > What progress has been made?
 - > What challenges have been overcome?
- Key challenges 20 years from now
 - > What methods will be used?
 - > What problems will have been solved?
 - > What will the field look like?

Main Scientific Goals of our Research Area

P.W. Anderson

More Is Different

Broken symmetry and the nature of the hierarchical structure of science.

The constructionist hypothesis breaks down when confronted with the twin difficulties of scale and complexity. The behavior of large and complex aggregates of elementary particles, it turns out, is not to be understood in terms of a simple extrapolation of the properties of a few particles. Instead, at each level of complexity entirely new properties appear, and the understanding of the new behaviors requires research which I think is as fundamental in its nature as any other. That is, it

Do we know all the basic forms of order? (in simple condensed matter systems)

Exploratory Search for New Materials Properties (in metallic d- and f-electron systems)

Key challenges 20 years ago

- > What progress has been made?
- > What challenges have been overcome?

Elementary Excitations

- (1) the low lying excitations determine the physical properties(the absolute value of the ground state energy is not important)
- (2) the low lying excitations (in most cases) can be viewed as **non-interacting particles**

(this corresponds to linearizing the response functions)

Landau, J. Phys. USSR 5, 71 (1941)

Lee & Pines, Phys. Rev. 88, 960 (1952)

cf Anderson in Concepts in Solids

collective

single-particle

On the Nature of Elementary Excitations in Many-Body Systems

integrate out photons: "see" electrons with retarded interaction

integrate out electrons: "see" interacting photons (gauge fields)

Nature of "Weak" Magnetism in Metals

material	T _c (K) Expt.	T _c (K) Stoner
MnSi	28	50-150
Ni₃Al	41	150-300
ZrZn ₂	29	300-500
Ni	627	-
Fe	1043	-

challenge:

- large Curie-Weiss moment
- small ordered moment
- T-dependence of M
- unsaturated M

Self-Consistent Ginzburg-Landau Theory

(includes stochastic order parameter fluctuations)

based on four parameters (material specific)

$$B = \frac{\partial F(M)}{V \partial M} = AM + bM^3 + \dots$$
mode-coupling

mode-coupling

$$A = a + b[3\langle m_{\parallel}^2 \rangle + 2\langle m_{\perp}^2 \rangle]$$

initial susceptibility

$$\Gamma(\mathbf{q}) = \gamma q \left(\chi^{-1} + cq^2\right)$$
spin wave stiffness
damping

material	T _c (K) Expt.	T _c (K) Stoner	T _c (K) Spin Fluct.
MnSi	28	50-150	29
Ni₃Al	41	150-300	40
ZrZn ₂	29	300-500	31
Ni	627	-	560-680
Fe	1043	-	920-1100

accounts for:

- large Curie-Weiss moment
- small ordered moment
- T-dependence of M
- unsaturated M

Electronic Structure & Correlations Effects in the heavy fermion superconductor UPt₃

Taileffer & Lonzarich, PRL 60, 1570 (1988)

Nature of mass enhancement?

Fermion-Quasiparticles in Real Materials

material	type of system	nature of dressing cloud	mass enhancement
MnSi	weak itinerant FM	magnetic polarons of conduction electrons	all with similar mass
Pr	paramagnet localised f-electrons	conduction electron induces polarisation of f-electrons	all with similar mass
UPt ₃	heavy-fermion SC	magnetic polarons; stronger spatial localisation; strong spin and orbital character	wide range of masses
CeRu ₂ Si ₂	heavy fermion PM	magnetic polarons; stronger spatial localisation; strong spin and orbital character	light & heavy masses
CeAl ₂	heavy fermion PM	conduction electron induces polarisation of f-electrons	wide range of masses

Lonzarich, J. Mag. Mag. Mat. 76, 1 (1988)

tune QP interactions with pressure, field, ...

What is a **Quantum** Phase Transition?

equivalent definitions:

(-) Phase transition driven by quantum fluctuations.

- (-) Phase transition at **zero temperature**.
- (-) Phase transition between quantum phases.
- (-) Phase transition characterized by change of quantum entanglement.

Hertz-Millis Analysis of Quantum Criticality

Hertz, PRB **14**, 1165 (1976) Millis, PRB **48**, 7183 (1993) von Löhneysen, et al. RMP **79**, 1015 (2007)

NFL-Resistivity without Quantum Criticality

CP et al. Nature **414**, 427 (2001)

Uemura et al. Nature Physics **3**, 34 (2007)

more Non-Fermi Liquid Puzzles

More Superconducting Phases in f-Electron Systems

Beyond subtle details: a ,new' form of magnetic order

Type 2 Superconductivity Revisited

Fluxlines in Type 2 Superconductors

Magneto-Optical Imaging in NbSe₂

Neutron Scattering in Nb

60 Pixels 80

7.11

100

120

20

20

40

Is there "Type 2" Magnetic Order?

from Huber & Schäfer, Springer

Skyrmion Lattice in Chiral Magnets

TEM Imaging in FeGe

Neutron Scattering in MnSi

TEM data by Xiuzhen Yu (RIKEN)

Yu et al., Nature Materials 10, 106 (2010)

Magnetic Phase Diagram of MnSi

Adams et al., PRL 107, 217206 (2011)

Main Entry: **to·pol·o·gy** Pronunciation: \tə-'pä-lə-jē, tä-\

2 a (1): a branch of mathematics concerned with those properties of geometric configurations (as point sets) which are unaltered by elastic deformations (as a stretching or a twisting) that are homeomorphisms (2): the set of all open subsets of a topological space b : <a href="https://www.configurationscon

Hierarchical Energy Scales in B20 compounds

Landau-Lifshitz vol. 8, §52

B20: no inversion center

left-handed

B20: no inversion center

right-handed

- (1) ferromagnetism
- (2) Dzyaloshinsky-Moriya
- (3) crystal field ($P2_13$):

locked to <111> or <100>

	$T_N(K)$	λ (Å)
MnGe	170	30 to 60
$Mn_{1-x}Fe_xSi$	< 28	180 to 120
Fe _{1-x} Co _x Si	< 45	> 300
FeGe	280	700
Cu ₂ OSeO ₃	54	620

Skyrmions in Non-Centrosymmetric Materials

P2₁3 insulator: Cu₂OSeO₃

PdFe-layer on Ir (111)

(stochastic) reading & writing

Romming et al. Science **341**, 636 (2013) CP, Physik Journal **12**, 20 (2013)

What about Spin Transfer Torques in Helimagnets?

A. Rosch, R. Duine et al. (November 2006)

Wessely et al., PRL **96**, 256601 (2006) both consider j $\approx 10^{12}$ Am⁻²

Nature of the Topological Unwinding of Skyrmions: Emergent Magnetic Monopoles

$$= -\frac{2\pi}{|q^e|}(N_{\text{out}}^s - N_{\text{in}}^s) = \mp \Phi_0$$

Paul Dirac

cf. prediction of magnetic monopoles to explain **quantized** electric charge

$$\mathbf{q_m} = n \frac{2\pi\hbar}{\mathbf{e}} \qquad \mathbf{e} = n \frac{2\pi\hbar}{\mathbf{q_m}}$$

defects in (emergent) B-field with quantized charge

Milde et al., Science, 340 1076 (2013)

Formation of a Topological Non-Fermi Liquid in MnSi

Nature of emergent gauge field?

Topological charge? Spontaneous skyrmions? Deconfined monopoles?

. . .

Ritz, et al. PRB **87**, 134424 (2013) Ritz, et al. Nature **497**, 231 (2013)

Key challenges 20 years from now

- > What methods will be used?
- > What problems will have been solved?
- > What will the field look like?

What methods will be used?

Materials

- \succ advanced preparation
- ➤ heterogeneous systems
- custom-taylored systems
- Experimental Methods
 - > small samples
 - ➤ extended range
 - ➤ combined parameters
 - > pump-probe techniques
 - > tracking complexity

Focussing Neutron Guides

What methods will be used?

- Materials
 - advanced preparation
 - ➤ heterogeneous systems
 - custom-taylored systems
- Experimental Methods
 - > small samples
 - > extended range
 - combined parameters
 - > pump-probe techniques
 - > tracking complexity

Time-Resolved Processes

What methods will be used?

- Materials
 - \succ advanced preparation
 - ➤ heterogeneous systems
 - custom-taylored systems
- Experimental Methods
 - > small samples
 - ➤ extended range
 - > combined parameters
 - > pump-probe techniques
 - > tracking complexity

Spin-Echo Spectroscopy & Depolarising Conditions

What problems will have been solved?

What will the field look like? Towards Changes of Paradigm

Characterisation of ordered phases

	fluid	nematic	smectic-A	crystal	Heisenberg magnet	superfluid	lsing magnet
new order	none	orientational	1D periodic	3D periodic	spin	condensate wave function	spin
rigidity	none	rotational elastic constant	layer modulus	shear modulus	spin-wave stiffness	phase of condensate	
broken symmetry	none	rotational	1D translation	3D translation	rotational	none	up/down
new mode	none	diffusive orientational	second. snd. undulation	shear sound	spin wave	second sound	
defect	none	disclinations, hedgehops	dislocations	dislocations	hedgehog	vortices	domain walls

Everything is stochastic? Fluctuation stabilized order? Stochastic topology?

What will the field look like?

Gilbert Lonzarich

Great discoveries are completely unexpected.

Chance favours the prepared mind.

Taming Serendipity.