Poles of order and disorder

Edinburgh; June 24, 2014

What is role of (dis)order for mechanical behavior?

Echoes

Condensed matter -> Particle/astro-physics

Higgs ↔ symmetry breaking in superconductors Dirac anti-particles ↔ Semiconductor bands, graphene Techniques: field theory, renormalization, scattering...

But we have something unique

Our toughest (and most common) problem is unimportant for those other fields.

Disorder and non-equilibrium (i.e, glassiness, free-energy landscapes...)

Cannot perturb crystal (*i.e.*, add defects) to get physics of glasses

Need other limit - complete disorder

Prototype of another way of making solids: Crystallization: 1st-order nucleation transition What (non-equilibrium) process creates complete disorder?

Example: phenomena created by disorder Qualitatively different from crystals

Quantum-mechanical two-level (tunneling) systems have been postulated to explain low-temperature properties of glasses

Orientational glass: (KBr)_{1-x} (KCN)_x

 $X = 0 \rightarrow crystal$ $X \approx 0.5 \rightarrow orientational glass$

Crossover from ordered to disordered behavior occurs at *very low* disorder $X_{crossover} \approx 0.01$

Initial questions ITP-Santa Barbara workshop in 1997

Is granular matter related to classes, colloids? Can we learn about glasses from granular materials & vice versa? Are there similar relaxation phenomena? What is transition between amorphous solid and liquid? Do length scales diverge at transition? Why are low-temperature properties of glasses anomalous? Is it only due to quantum mechanics?

Do different ways of creating rigidity produce same behavior? What are properties of amorphous solid?

Nature of rigidity

Response to compression and to shear:

In crystals, G always comparable to B

Excitations: Normal modes of vibration density of states spatial properties heat transport anharmonicity

Does disorder matter?

Jamming: Compress random collection of spheres in a box Does this protocol produce different physics from crystals?

Simulate finite-range, repulsive potentials:

 $V(r) = V_0 (1 - r/\sigma)^{\alpha} \quad r < \sigma \quad D = 2, D = 3$ $= 0 \qquad r > \sigma$

 ϕ_c -- onset of jamming at T = 0

Quench to local energy minimum

Jammed solids different from crystals

Shear and compression become constrained at same φ_c

Shear infinitely weaker than bulk modulus at transition

Durian, O'Hern, Liu

Maxwell criterion for rigidity

Minimum number of overlaps needed for mechanical stability

N frictionless spheres in D dimensions:

Match **# equations** (# non-trivial degrees of freedom) = ND to **# unknowns** (# interparticle normal forces) = NZ/2

\Rightarrow Z_c = 2D

Criterion for rigidity: *global* condition - not *local* Physics governed by connectivity (Thorpe, Phillips, Alexander)

O'Hern, Liu

Normal modes in "normal" solid Low-frequency normal modes \Rightarrow long-wavelength plane waves. Density of modes, $D(\omega)$, from counting waves: $D(\omega) \propto \omega^{d-1}$ in d-dimensions. D(ω) $D(\omega) \propto \omega^2$ in 3-D

ω

Long wavelengths "average" over disorder. All solids *should* behave this way.

Density of states near jamming: no Debye behavior at ϕ_c

Jamming is epitome of disorder (no length on which one can average to recover elasticity)

New class of excitations

Silbert, Liu

Concrete example of new class of excitations: emerge from critical point What are they?

Created from soft modes:

Cutting argument (Wyart)

Structure (not plane waves):

"Quasi-localized" at low frequencies

Heat transport at low T:

Poor conductors -- nearly-constant diffusivity

Highly anharmonic: Dynamic heterogeneities?

Properties tuned by varying $\Delta \phi = (\phi - \phi_c)$

Nature of transition2 lengths determined from ω^* and sound speeds $\xi_L = 2\pi c_L / \omega^* \propto (Z - Z_c)^{-1}$ $\xi_T = 2\pi c_T / \omega^* \propto (Z - Z_c)^{-1/2}$ $\xi_L = L^*$ (from cutting argument)

Both diverge at transition from solid to "fluid"

Silbert, Liu

Little disorder makes it behave like jammed solid

"Experiment – Where theory comes to die"

Theory has been <u>very</u> powerful in giving a framework for understanding glasses.

It has been less successful in being useful for experiment.

Goal for next ten years: to find ways/systems/phenomena to make contact between experiment and theory.

How does theory relate to experiment?

What needs to be explained?

What are precise tests of theory?

What new phenomena are predicted?

What needs to be explained in glasses?

Glasses:

- 1) Activated relaxation; long relaxation times
- 2) Cause of super-Arrhenius relaxation
- 3) High-frequency response reflects dynamical slowing (glasses and spin-glasses)
- 4) Surface (confinement) effects

Where is diverging length scale?

High-frequency response reflects dynamical slowing

Slope, σ, \rightarrow 0 near where relaxation time diverges

⇒ Divergent static linear susceptibility

Jamming – a concrete example new physics associated with critical point

Many properties can be understood; experimentally relevant

0.1

0.0

0.00

 $\phi_{c} = \phi_{c}^{o}$

0.04

0.02

 $\phi - \phi_c$

Coordination number vs. packing fraction Experiments on foams and emulsions (Brujic *et al.;* van Hecke et al.)

Experiments on colloids (Yodh *et al.*)

Jamming – a concrete example new physics associated with critical point

Many properties can be understood; experimentally relevant

Quasi-localized modes at low frequencies

– anharmonic with low energy barriers

Experiments on colloids (Yodh et al.; Bonn et al.)

Jamming disordered limit for rigidity $Low-T glasses \leftrightarrow Jamming$ $Excess low-energy excitations <math>\Rightarrow$ Boson peak Small constant diffusivity $\Rightarrow \kappa(T) \propto T$ above plateau Anharmonic modes \Rightarrow phonon echoes

Basic results hold for:

Long-range interactions with attractions (e.g., L-J potentials)

New class of excitations

 \Rightarrow new way to think about glasses

Current questions about jamming transition (point J)

Is J a glass transition (or is it a singular limit)?

Is J too ideal (or does potential, shape, T, etc. matter)?

Is J relevant to laboratory systems (or is it only in computer)?

Can jamming help understand low-T properties of glasses?

Can jamming be used to understand poly-crystalline matter?

How does one go between ground states?

Can one tune G/B in real materials?

Is there a lattice model for jamming?

Andrea J. Liu

Carl Goodrich

Xu

Vincenzo VItelli

Matthieu Wyart

Tom Witten

Corey O'Hern

Department of Energy, Office of Basic Energy Sciences