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What is role of (dis)order for mechanical behavior? 



Echoes 
Condensed matter ↔ Particle/astro-physics 

Higgs ↔ symmetry breaking in superconductors 

Dirac anti-particles ↔ Semiconductor bands, graphene 
Techniques: field theory, renormalization, scattering… 

But we have something unique 
Our toughest (and most common) problem is unimportant for those other 

fields. 

Disorder and non-equilibrium (i.e, glassiness, free-energy landscapes…) 



Why ask that? 

Cannot perturb crystal (i.e., add defects) to get physics of glasses

Need other limit - complete disorder 

  Prototype of another way of making solids: 
 Crystallization: 1st-order nucleation transition 
 What (non-equilibrium) process creates complete disorder?  

Crystals are essence of order 
What is essence of disorder? 



Example: phenomena created by disorder 
Qualitatively different from crystals 

 specific heat: excess low-T excitations          thermal conductivity 

Quantum-mechanical two-level (tunneling) systems have been 
postulated to explain low-temperature properties of glasses   

from: W.A. Phillips 

glass: vitreous silica 

crystal: α- quartz 
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Similar crossovers
(KBr)1�x

(KCN)
x

x = 0.0 ! crystal

x ⇡ 0.5 ! orientational glass

T 2

T 3

De Yoreo, J. J. et al. Phys. Rev. Lett. 51, 1050 (1983)

x

crossover

⇡ 0.01

crossover from ordered 
to disordered behavior

De Yoreo et al. PRL (1983) 

X = 0    ➞ crystal 
X ≈ 0.5 ➞ orientational glass 

Crossover from ordered to 
disordered behavior occurs at 
very low disorder 

 Xcrossover ≈ 0.01 

Orientational glass:  (KBr)1-x (KCN)x  



Initial questions 
ITP-Santa Barbara workshop in 1997 

Is granular matter related to classes, colloids? 
 Can we learn about glasses from granular materials & vice versa? 
 Are there similar relaxation phenomena? 

What is transition between amorphous solid and liquid? 
 Do length scales diverge at transition? 

Why are low-temperature properties of glasses anomalous? 
 Is it only due to quantum mechanics? 

Do different ways of creating rigidity produce same behavior? 
 What are properties of amorphous solid? 



Nature of rigidity 
Response to compression and to shear: 

             B                     G  
  (bulk modulus)                   (shear modulus) 

    

 In crystals, G always comparable to B 

Excitations:  Normal modes of vibration 
  density of states 
  spatial properties 
  heat transport 
  anharmonicity 

Does disorder matter? 



Jamming:  
Compress random collection of spheres in a box 

Does this protocol produce different physics from crystals? 

 Simulate finite-range, repulsive potentials: 

              V(r)  =  V0 (1 – r/σ)α   r < σ     D = 2,  D = 3 
     =  0            r > σ	


φc -- onset of jamming at T = 0 

Quench to local 
energy minimum 



Durian, O’Hern, Liu  

Shear infinitely weaker than bulk modulus at transition 

-1 

Shear and compression 
become constrained at same φc 

Jammed solids different from crystals  

Jamming 
G/B →  0  at  φc (like liquid) 

Crystal 
G/B ~ 1 



Maxwell criterion for rigidity 

Minimum number of overlaps needed for mechanical stability 
 N frictionless spheres in D dimensions:  
 Match # equations  (# non-trivial degrees of freedom) = ND  
       to # unknowns (# interparticle normal forces) = NZ/2 

⇒  Zc = 2D 

We find:   Zc = 3.99 ± 0.01   (2D);    Zc = 5.97 ± 0.03  (3D) 

Criterion for rigidity:   global condition - not local 

Physics governed by connectivity   (Thorpe, Phillips, Alexander) 

O’Hern, Liu  



Normal modes in “normal” solid 
Low-frequency normal modes  

  ⇒  long-wavelength plane waves. 

Density of modes, D(ω), from counting waves: 

  D(ω) ∝ ωd-1 in d-dimensions. 

Long wavelengths “average” over disorder. 
    All solids should behave this way. 

D(ω) 

ω 

D(ω) ∝ ω2 in 3-D 



Density of states near jamming: 
no Debye behavior at φc  

Jamming is epitome of disorder 
(no length on which one can average to recover elasticity) 

New class of excitations 

Silbert, Liu 

ω* is characteristic  
onset-frequency of new 

excitations 

ω* → 0  as  Δφ  → 0  

ω*	




Concrete example of new class of excitations:  
emerge from critical point 

 What are they? 
Created from soft modes:  

 Cutting argument (Wyart) 

Structure (not plane waves): 
  “Quasi-localized” at low frequencies 
     

Heat transport at low T: 
 Poor conductors -- nearly-constant diffusivity 

Highly anharmonic: 
 Dynamic heterogeneities? 

Properties tuned by varying ∆φ﹦(φ - φc) 



Nature of transition 
2 lengths determined from ω* and sound speeds 

ξL = 2π cL /ω* ∝ (Z-Zc)-1            ξT = 2π cT /ω* ∝ (Z-Zc)-1/2
 

ξL = L* (from cutting argument)  

Both diverge at transition from solid to “fluid” 

Silbert, Liu φ -  φc 	


ξΤ 	
 Slope = - 0.26 



From order to disorder: 
When does (dis)order dominate response? 

3 example systems
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Color = local 
order 

Little disorder makes it behave like jammed solid  



“Experiment – Where theory comes to die” 

Theory has been very powerful in giving a framework for 
understanding glasses.   
It has been less successful in being useful for experiment.  

Goal for next ten years: to find ways/systems/phenomena to 
make contact between experiment and theory. 



How does theory relate to experiment? 

What needs to be explained? 

What are precise tests of theory? 

What new phenomena are predicted? 



What needs to be explained in glasses? 

Glasses:   
 1)  Activated relaxation; long relaxation times 
 2)  Cause of super-Arrhenius relaxation 
 3)  High-frequency response reflects dynamical slowing 
  (glasses and spin-glasses) 
 4)  Surface (confinement) effects 

Where is diverging length scale? 



 High-frequency response reflects dynamical slowing 
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its structural glass counterpart, there is considerably less

susceptibility data that span a very wide frequency

range and none come close to covering the 14 decades

of frequency used in studying supercooled liquids. This

is partly due to the fact that, since many spin glasses are

metallic, high-frequency data are difficult to obtain

without significant eddy-current heating. To remedy

this situation, the magnetic susceptibility of an insulat-

ing Ising spin glass recently has been measured over a

relatively wide frequency range [8] and can be com-

pared to the behavior of the susceptibility in liquids.

This data shows a number of surprising similarities be-

tween supercooled liquids approaching the glass and a

paramagnet approaching the spin glass.

As indicated above, the conclusions we obtain about

the glass transition must rely on extrapolations of data

over a wide temperature range. The conclusions that we

can reach about the spin-glass transition are not as

dependent on extrapolations over wide ranges of

temperature but are, on the other hand, dependent on

extrapolations over a wide range of frequency. The

observed similarities between these two systems give us

added confidence about the procedures we have used to

extrapolate our results to the region near the transition

since different types of extrapolations are involved in the

two cases.

The susceptibility measurements allow us to draw

several perhaps surprising conclusions: 1) From the

shape of the susceptibility in both the supercooled

liquids and spin glasses, we conclude that the high-

frequency response contains information about the

approach to the transition. 2) From the form of the

frequency response above the characteristic loss peak at

⌦P of the dielectric susceptibility in supercooled liquids
we argue for the existence of a diverging static suscepti-

bility, �� [9]. 3) From the form of both the low- and

high-frequency response of a spin glass [8], we argue

that there is a divergence of the linear, as well as of the

nonlinear, magnetic susceptibility at the spin-glass tran-

sition. Evidence compiled from the literature support

this claim. We will outline these conclusions below.

2. Shape of the Dielectric Susceptibility in

Liquids

The dielectric susceptibility data, � (⌦ ) = � '(⌦) +
i�"(⌦ ), for many different supercooled liquids have
shown that there are generically three distinct frequency

regimes for the primary response at every temperature.

Figure 1 shows a schematic version of this behavior for

the imaginary part, �"(⌦ ). At low frequency, �"(⌦ )
increases linearly with increasing frequency before

reaching a maximum in the vicinity of a characteristic

frequency ⌦P. (There has been some controversy in the
literature about whether this region of the spectrum is

always linear in the frequency [10]. For the argument

that follows, the exponent in this region is not impor-

tant.) Between ⌦P and a higher frequency, ⌦T, the
response decreases as C1⌦ –1/w, where w is approximately
the width of the peak, W , normalized by the width of a

simple Debye relaxation, WD: w ≅ W /WD. Above ⌦T,
the response changes to a second power law, C2⌦ –⌥, with
⌥ smaller than 1/w. Recent measurements have shown
that this power law persists over at least eight decades in

frequency [11]. Hence, we feel justified in regarding it

as the asymptotic form for the primary response, �"(⌦ ),
that extends from the frequency ⌦T up to an approxi-
mately temperature-independent phonon cut-off

frequency, ⌦0, in the infrared.

Fig. 1. A schematic diagram showing the three distinct frequency

regimes for the imaginary part of the dielectric response of a super-

cooled liquid.

3. Diverging Static Susceptibility in

Supercooled Liquids

As the temperature is lowered, the entire spectrum

shifts to lower frequency. (If a divergence in the times

scales truly exists, then at T0, the entire curve will have

shifted infinitely far to the left on the log ⌦ axis.) As the
curve shifts to lower frequencies, its shape also

changes: both 1/w and ⌥ decrease [12]. An extrapola-
tion of the data for ⌥ indicates that it approaches zero
(i.e., �"(⌦ ) = C2 becomes independent of frequency) as
T approaches T⌥ [9, 11]. The simplest extrapolation

which is consistent with the data is that ⌥ approaches
zero linearly with decreasing temperature: ⌥ = D (T –
T⌥ ). The extrapolations that we have done strongly sug-

gest that T⌥ is close to (or slightly greater than) T0
[9, 11]. Thus we have the situation that, at T0, �"(⌦ ) is
constant over the entire range ⌦T (= 0)  ⌦ ⌦0.
We can argue that the above data lead to a diverging

static susceptibility, �� , for the supercooled liquid at

208

σ	


Slope, σ, → 0 near where relaxation 
time diverges 

⇒  Divergent static linear susceptibility 



Jamming – a concrete example 
new physics associated with critical point 

Many properties can be understood; experimentally relevant 

Coordination number vs. packing fraction  
Experiments on foams and emulsions (Brujic et al.; van Hecke et al.) 

Shape of g(r) vs. T and p: g(rp) peak at φc 
Experiments on colloids (Yodh et al.; Nagel et al.) 

Ratio of G/B for frictional particles 
Experiments on colloids (Yodh et al.) 
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and longitudinal (black squares) branches are binned in q; the
error bars show the standard error of all ω in the bin. For all
φ, the dispersion relation can be obtained from Gaussian fits
at least up to q ≈ 2 µm−1. In all, we studied five different
packings in the range 0.8626 ! φ ! 0.8822; the remaining
four sets of dispersion curves are shown in the Supplemental
Material [24]. In all cases, the curves are essentially linear at
low q and bend at higher q, as expected [17,28].

Note that most of the data lie at frequencies above the boson
peak frequency, ω∗. Previous simulations found that while the
dispersion relation for ω < ω∗ is linear in q, with a slope
consistent with the elastic constant expected for sound modes
[29], for ω ≫ ω∗ the situation is different: the modes are not
plane-wave-like and the distinction between transverse and
longitudinal directions breaks down [28]. To corroborate that
the elastic constants can be extracted from dispersion relations
above ω∗, we compare to numerical calculations. Figure 2(b)
shows the transverse and longitudinal dispersion relations of
numerically generated jammed bidisperse packings, extracted
by fitting the peaks of fT,L(q,ω); the dispersion relations
remain linear in q up to frequencies about an order of
magnitude higher than ω∗, with slopes consistent with the
values of the elastic moduli, as indicated by the dashed lines.
These calculations were carried out at pressure p = 10−2,
where ω∗ ≈ 0.03 is in units of

√
ϵ/mσ 2, where ϵ is the

interaction strength of the particles which interact via harmonic
repulsion, σ is the average particle diameter, and m is the
particle mass. These results suggest that in analyzing the data,
we must restrict ourselves to a range of frequencies within an
order of magnitude of ω∗ in order to extract the sound velocities
from linear fits to the experimentally obtained dispersion
relations, i.e., over the range 0.25 < q < 1.00 µm−1 (solid
blue lines). The mass density ϱ of the particles and the entire
system is very close to that of water (1000 kg/m3), and the
areal density is ρ2D = ϱh, where h ≈ 1.4 × 10−6 m is the
height of the sample cell. We thus obtain the longitudinal
modulus, M = ρ2Dc2

l , the shear modulus G = ρ2Dc2
t , and

the bulk modulus, B = M − G, for each packing fraction
[Fig. 3(a)].

We also compare the magnitude of G from the experimental
dispersion relation to that measured in bulk rheology experi-
ments of jammed PNIPAM suspensions [35–37]. Expressed in
3D units, we find G to vary between ≈10 and 36 Pa, consistent
with earlier measurements on similar systems, which found a
range 4–20 Pa [35,36,38].

According to theoretical predictions for athermal systems
near the jamming transition [1,4], the ratio of the shear to
bulk modulus, G/B, should be independent of the interparticle
potential. For the frictionless case, numerically generated
packings are well-described by G/B ≈ 0.23'z(1 − 0.14'z),
where 'z = z − z0

c and the frictionless isostatic number is
z0
c = 2D = 4 in two dimensions.

By contrast, for frictional particles, we find

G/B = 0.8(±0.1)'z∞[1 − 0.25(±0.05)'z∞] (3)

by fitting simulation data in Fig. 4(b) of Somfai et al. [20],
where 'z∞ = z − z∞

c and the frictional isostatic number at
infinite friction is z∞

c = D + 1 = 3.

(b)(a)

(d)(c)

FIG. 3. (Color online) (a) Experimental bulk (B, circles) and
shear moduli (G, squares) as a function of packing fraction φ.
(b) Ratio G/B as a function of φ − φc. Dashed line shows the
expected curve for frictional spheres [20], where φ∞

c and φµ
c are

the fit parameters. For comparison, the solid red curve shows G/B

calculated for frictionless particles. (c) B/keff and G/keff as a function
of 'z∞ = z − z∞

c with corresponding fits (see text); ϵ is the only fit
parameter. (d) B and G as a function of φ − φµ

c . Dashed lines are the
same fits as in (c).

Unfortunately, it is very difficult to deduce the contact
number directly from experiment. We can, however, analyze
the experimental findings using our packing fraction measure-
ments and a result that has been obtained from numerical
simulations of frictional particles [21]. For particles with finite
friction coefficient µ, the scaling relation between z − z∞

c and
φ − φ∞

c , where φ∞
c is the critical packing fraction at infinite

friction, depends on the critical packing fraction for parti-
cles with friction µ, φ

µ
c (note, φ∞

c ! φ
µ
c ! φ0

c ) [21]. Using
z − z

µ
c = C1(φ − φ

µ
c )0.5 and z

µ
c − z∞

c = C2(φµ
c − φ∞

c )1.7, we
fit our data to Eq. (3) with 'z∞ = (z − z

µ
c ) + (zµ

c − z∞
c ) =

C1(φ − φ
µ
c )0.5 + C2(φµ

c − φ∞
c )1.7; from Ref. [21], C1 = 2.7 ±

0.6 and C2 = 65 ± 2. We note that the fitting involves two fit
parameters, φµ

c and φ∞
c . (Note also that, because φ

µ
c − φ∞

c is a
function of µ, we could have used µ as the second fit parameter
instead of φ

µ
c .)

The resulting best fit for G/B as a function of φ − φc is
shown in Fig. 3(b) (dashed line, φc = φ

µ
c ) together with the

expected curve for the frictionless form (solid line, φc = φ0
c ).

The agreement is excellent with the frictional form, whereas
the agreement with the frictionless form is poor. The results,
therefore, lead us to conclude that PNIPAM particles in
suspension experience interparticle friction effects.

The fit parameters are φ
µ
c ≈ 0.851 ± 0.005 and φ∞

c ≈
0.837 ± 0.01, indicating a µ of order unity or higher by
comparison to Ref. [21]. We note further that φ∞

c , and thus the
difference, φµ

c − φ∞
c , is particularly sensitive to small changes
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range with only minimal changes of temperature. This class of suspen-
sion has been successfully used to model a variety of phase transi-
tions16–21. In our experiments, approximately equal numbers of
monodisperse small and large NIPA particles with room-temperature
(25 uC)diameters ofsS~1:17 mmandsL~1:63 mm, respectively,were
sandwiched between two glass cover slips to form a two-dimensional
colloidal suspension. The particle interaction potentials were measured
to be short-range repulsive with a soft tail (Supplementary Fig. S2). The
use of binary mixtures reduces the possibility of crystallization22,23 and
the softness of the potential, in contrast to that of hard spheres, permits
access to packing fractions above the jamming transition.

Inmost colloidal experiments the thermodynamic control variable
is packing fraction. Temperature control elements on themicroscope
objective in our experiments permitted the packing fraction w to be
varied in situ from,0.76 to,0.93, that is, across the packing fraction
of the T5 0 jamming transition at w< 0.84 for temperatures ranging
from 24.0 uC to 30.0 uC. At each w the sample was permitted to
equilibrate for 1,200 s before measurements were taken. We then
used standard video microscopy24 and particle-tracking techniques25

to obtain the particle positions and the particle displacements. By
identifying particle size and position we computed the three distinct
pair-correlation functions: gLL associatedwith large particles only, gSS
associated with small particles only, and gLS probing the correlation
between large and small particles. Here we focus only on gLL.
Qualitatively similar results were obtained for the other two correla-
tion functions (Supplementary Fig. S3).

Figure 2 shows gLL as a function of packing fraction w. A prominent
first peak at a distance of approximately one large particle diameter
was found at all w. In the inset to Fig. 2 we plotted g1, the height of the
first peak of gLL(r), versus w. We note that g1 has a pronounced
maximum at w5 0.85. We identify this maximum as a vestige of
the divergence in g(r) seen at Point J, the T~0 jamming transition.

In parallel, we used molecular dynamics simulations to explore the
maximum in g1 as a function of T and w. We performed simulations
using 1,000 particles of massm in a three-dimensional cubic box with
periodic boundary conditions. The particles are taken from a 50:50
distribution of the two diameters sL and sS, with ratio sL/sS5 1.4.
Particles i and j interact via a repulsive spring-like potential,
U (rij)~e 1{rij=dij

! "a
=a, if their separation rij is smaller than the

sum of their radii (that is, if they overlap), and do not interact other-
wise.We used two types of repulsive potentials: harmonic (a~2) and
Hertzian (a~5=2). We express distance in units of sS, time in units
of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
msS2=e

p
, sample temperature T in units of e and pressure in units

of e=sS
3. We note that the Hertzian form provides a reasonable fit to

the experimentally measured pair potential for NIPA particles at low
concentration, with e=T%270 for the large particles (Supplementary
Fig. S2). Figure 3a shows the data from simulations for harmonic

potentials at four temperatures that are analogous to ourw-dependent
colloid experiments: g1 is plotted versus Dw:w{wc, where wc is the
onset of jamming at T5 0. The curve for each T exhibits a clear
maximum, where g1~gmax

1 , atDwv(T) (subscript ‘v’ indicates vestige;
inset to Fig. 3a). Thus, the constant-temperature three-dimensional
simulation data are consistent with the colloidal experiments in two
dimensions in that they both exhibit structural maxima as a function
of packing fraction.

In both simulation and experiment, the value of gmax
1 is finite and

does not diverge as it does at Point J (refs 2, 9). In experiments, many
factors can conspire to reduce gmax

1 . In simulations, however, gmax
1 is

finite only because the temperature is not zero. Indeed, Fig. 3a shows
that gmax

1 decreases with increasing T as gmax
1 ! DQv Tð Þð Þ{1, while its

inset shows that Dwv(T) approaches zero as T tends to zero. This
behaviour demonstrates that the maximum in g1 at non-zero T
evolves directly from the divergence in gmax

1 at Point J.
The existence of a maximum in g1 at finite temperature is easily

understood. In the dilute limit, the height of the first peak increases
withw asmore particles join the first-neighbour shell.At highw, the first
peak broadens with w as the particles have greater overlap, leading to a
drop in the peak height. We can predict the w dependence of gmax

1 as
follows. At finite temperature, there are two contributions to the over-
lap between particles: (1) the static overlap LO due to compression,
which would exist even at T~0, and (2) the additional overlap LT
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Figure 2 | Pair-correlation function g(r) for the large particles at all
experimental packing fractions. The inset shows g1, the height of the first
peak of g(r), as a function of packing fraction w. The error bars in g1 are the
standard deviations of three independent calculations.
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the arrows pointing to the temperatures at which g1 reaches the maximum
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inset shows a three-dimensional plot of g1 (colour scale) versusT and w2wc.
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Jamming and geometry of two-dimensional foams

Fig. 2: (Color online) Contact number Z of packings vs. their
packing fraction φ. Grey scatter: data for every individual
image. Circles: data averaged over experimental run at approx-
imately constant packing fraction. The solid line is fit to
Z = 4+Z0(φ−φc)β , with Z0 = 4.02± 0.20, φc = 0.842± 0.002
and β = 0.50± 0.02. Upper inset: same data on log-log scale.
Lower inset: Z vs. experimentally determined packing fraction
φexp. The fit has a power law exponent of 0.70.

Note, however, that the range of packing fractions we
can scan over, extends to a surprisingly large value of
φ= 1.06. This is due to a striking discrepancy between
the manner in which φ is calculated in simulations and in
experiments. In simulations, the area or volume of spheres
is fixed, and if one knows the number of particles in
the periodic box, φ is readily calculated. In experiments,
however, φ can only be inferred from experimental images.
This difference results in the following: if particles overlap,
the overlapping area of the two particles is counted twice
in simulations, while it is only counted once in our
experiment. This doubly counted area scales with the
overlap ξ as Aov ∼ ξ3/2, which stems from the fact that
the deformed area scales as rc× ξ =

√
ξ× ξ [11]. Since

ξ ∼ (φ−φc) [4], the conversion between a packing fraction
extracted from a simulation φth and its experimentally
accessible counterpart φexp should read:

φexp = φth−C(φth−φc)3/2. (1)

We calculate both φexp and φth from numerically gener-
ated packings, and determine the pre-factor C = 0.95. We
then invert eq. (1) and calculate the φth corresponding to
our φexp.
When plotting our data against φth as in fig. 2, we excel-

lently match simulations, while we find an apparent scaling
exponent β = 0.70 if we plot Z as a function of the exper-
imentally determined φexp, see lower inset of fig. 2, owing
to the non-trivial relation in ∆φ between φth and φexp.
We are not the the first to experimentally inves-

tigate the scaling of Z with φ. Majmudar et al. [9]
have extracted the same quantities from images of two-
dimensional, frictional, photoelastic discs and compared

Fig. 3: (Color online) Fractions of bubbles in the foam with n
contacts as a function of Z. Solid lines: solutions to eqs. (2)–(5)
for the species listed at the top of the graph.

these to predictions from simulations. From their data it
appears the prefactor Z0 ≈ 16, inconsistent with simula-
tions. Our results do allow for a direct comparison with
frictionless jamming predictions, which can be seen from
the excellent agreement between parameters.

Local contact fractions. – Besides the average
contact number per packing Z we can also extract the
fraction xz of bubbles in each image that has z contacts.
We average these fractions over all images that correspond
to a global packing fraction (and contact number Z )
cf. the black circles in fig. 2. We plot these fractions
versus the average Z in fig. 3: we see clear trends in the
abundance of contacts at the particle level, to which we
apply a very recent model [16].
This model predicts the fractions of 4 species

{xn, . . . , xn+3} in a packing, given the global Z and the
variance σ2 =

∑n+3
i=n xi(Z − i)2. This constraint, together

with the trivial normalization constraints
∑n+3
i=n xi = 1,∑n+3

i=n ixi =Z and the ill-understood, but empirically
observed1 constraint that the number of particles with
odd and even contacts is equal, leads to a set of of
equations, the solution of which is:

xn =
(
(Z − (n+2))2+σ2− 1/2

)
/4, (2)

xn+1 =
(
−(Z − (n+1))2−σ2+5/2

)
/4, (3)

xn+2 =
(
−(Z − (n+2))2−σ2+5/2

)
/4, (4)

xn+3 =
(
(Z − (n+1))2+σ2− 1/2

)
/4. (5)

Since we know Z and σ2(= 0.75) from the data we
can obtain the fractions xi without any free parameters.
However, we measure non-negligible fractions of not 4,
but 5 species. We therefore apply the model for n= 3 to
4<Z < 4.75, where x7 ≈ 0 and for n= 4 to 4.97<Z < 6
1Both in [16] and this work.

34002-p3

system. In addition, the sum of forces on each particle is
zero to within the experimental error, i.e., less than 10% of
the total force on a given particle. Consequently, a global
energy minimization that allows the particles to move to
equilibrium does not move any of the particles beyond the
resolution of the technique, which is one-third of the voxel
size. Therefore, the observed deviations from the linear
scaling may be a result of the formation of contacts upon
compression and not the proposed anharmonicity in the
potential [11].

Theoretically, these rearrangements can be understood
in terms of the corrections to scaling away from the critical
point. It has been shown that, for generic random elastic
networks, all the elastic moduli must vanish linearly
with the excess coordination G! B! !z [3,25,26], as is
observed numerically [9]. However, packings of particles
differ from random networks in the following sense: Their
geometry is constrained by the fact that all the contact
forces between the particles are positive. It was shown that
this constraint implies that the bulk modulus must have an
additional contribution that does not vanish at jamming,
that is, B " "@P=@" # C1 þ C2!z, where C1 and C2 are
constants [9]. Moreover, the parameter !z has been shown
to govern the crossover from the isostatic behavior close to
jamming to the continuum behavior at the large scale [27].

Since the scaling relation !z! ffiffiffiffiffiffiffi
!"

p
holds over the ex-

perimental range in Fig. 2(a), we get B # C1 þ C0
2

ffiffiffiffiffiffiffi
!"

p

[25]. If we assume that, apart from the creation of new
contacts, no plastic rearrangements occur, this equation
applies for all " and, combined with !z! ffiffiffiffiffiffiffi

!"
p

, can be
integrated and expanded to give the two leading order
terms in !",

P% Pc ¼ P0ð"%"cÞ þ P1ð"%"cÞ#; (3)

where Pc ¼ 0:27 kPa is the experimental value of the
pressure at the lowest compression, P0 ¼ 3:0 kPa and
P1 ¼ 14:8 kPa are prefactors obtained from the fit of
the data in Fig. 2(c), and # ¼ 1:5 is fixed as the universal
exponent for the first correction to scaling. The data are in
excellent agreement with the theory in the range up to
!" ¼ 0:18, beyond which the incompressibility of the
droplets causes a divergence in the pressure. Remarkably,
converting the prefactor P0 in the linear term to the units of
pressure defined in numerical simulations of bidisperse
packings close to jamming recovers the same value to
one decimal place [8]. The success of the fit in Fig. 2(c)
with Eq. (3) implies that the data in Fig. 2(b) can also be
explained in terms of the corrections to the scaling of
excess contacts with pressure in the form !z ¼ D1

ffiffiffiffiffiffiffi
!P

p
%

D2!P, where the prefactors D1 ¼ 4:3 kPa%1=2 and

FIG. 2 (color online). Scaling laws for the excess average number of contacts !z with the changes in (a) global density
!" ¼ ð"%"cÞ and (b) the applied pressure !P ¼ ðP% PcÞ. A parametric plot of !P versus !" in (c) implies the nonlinear scaling
law, in agreement with previous bulk measurements. The power-law fits are shown on log-log scales in the insets. (d) Probability
density distributions of the pressure per particle PL rescaled by the mean as a function of the applied pressure. The inset shows the
corresponding coefficients of variation for all measured distributions. The pressure fluctuations are best fit with exponential tails at low
pressures and a Gaussian distribution at high pressure.
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Quasi-localized modes at low frequencies  
 – anharmonic with low energy barriers 

Experiments on colloids (Yodh et al.; Bonn et al.) 

Jamming – a concrete example 
new physics associated with critical point 

Many properties can be understood; experimentally relevant 
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FIG. 3: (color online) (a) The vibrational density of states relative to the Debye prediction,D(!)/!, for � = 0.859. The position
of the maximum in this plot, shown by the vertical dashed line, defines the boson peak frequency, !⇤. (b) The density of states,
D(!) and (c) the participation ratio p(!). The dotted vertical lines in (b) and (c) indicate the frequencies of the modes shown
in the remaining panels. (d-f) Displacement vector plots of eigenmodes at (d) low, (e) intermediate, and (f) high frequencies.
The size of each arrow is proportional to the displacement of the particle at that position, weighted by its mass: |ui|

p
mi. Blue

circles in (d) indicate regions of high-displacements in the quasilocalized mode.

colloidal particle polydispersity. The results are plotted
in Fig. 1. Note that we cannot di↵erentiate between the
harmonic and Hertzian fits; the di↵erence is tiny except
for extremely large overlaps where statistics are limited.
The fit parameters ✏ and � = hRi + Rji for the har-
monic potential are shown as insets in Fig. 1. As one
might expect, the average size of the particles increases
with �, and the energy scale is roughly constant when
� > 0.84. The solid curve in the top inset of Fig. 1 shows
the value of the diameter implicit in the assignment of
� obtained by interpolation of dynamic light scattering
data at di↵erent temperatures at low concentration. Here
we have measured the elastic contact distance while dy-
namic light scattering measures a hydrodynamic radius.
The uncertainty in the solid curve is larger than the dif-
ference between the curve and our data. The correlation
method therefore provides a useful new way of measuring
interparticle interactions at high concentrations.

The accuracy of our results depends on the statistics
of the time averages to calculate the matrix elements in
Eq. 1, as well as on the ability to resolve particle dis-
placements u(t). The optical resolution, ✏ ⇡ 5nm, at
best in our case, must be small compared to the av-
erage root-mean-squared displacement, calculated to be

c = hC1/2
ii i ⇡ 22nm at the packing fraction � = 0.859.

Likewise, the number of degrees of freedom, 2N ⇡ 7200,
should be small compared to the number of time frames,

T = 30000, at most in our case, over which Cij is av-
eraged. Fig. 2(a) and (b) show the density of vibra-
tional states, D(!), as ✏/c and 2N/T are varied. D(!)
is normalized so that

R1
0 D(!)d! = 2N , and ✏ is var-

ied by rounding measured particle displacements. Note
that poor resolution artificially lowers the high end of
the spectrum but that inadequate statistics raise the high
end, so that the two e↵ects tend to cancel. The spectrum
appears reasonably close to convergence for T = 30000
and ✏ = 5nm, used in the other figures. The error in the
width of the spectrum for these values is estimated as
10% [15] (see also [14]).

The vibrational spectrum for crystals has the Debye
form, D(!) ⇠ !. In Fig. 3(a) we plot the measured den-
sity of states relative to the Debye prediction, D(!)/!,
at � = 0.859, well above the jamming transition at
�c ⇡ 0.84 [16] [23]. For an elastic solid such as a crystal,
D(!)/! would be flat at low frequencies; the presence
of a maximum in Fig. 3(a) indicates the existence of a
boson peak and the position of the maximum defines the
boson peak frequency, !⇤. Thus our results show that
a boson peak—an important feature in the vibrational
spectrum of atomic and molecular glasses—also appears
in a disordered colloidal solid.

Fig. 3(b) shows the vibrational density of states, D(!).
Fig. 3 shows the mode participation ratio, p(!), which
measures the degree of spatial localization of a mode n:



Jamming –  
disordered limit for rigidity 

 Low-T glasses ⟺ Jamming 
 Excess low-energy excitations ⇒  Boson peak 
 Small constant diffusivity ⇒  κ(T) ∝ T above plateau 

 Anharmonic modes ⇒  phonon echoes 

Basic results hold for:  
 Long-range interactions with attractions (e.g., L-J potentials) 

  New class of excitations 

      ⇒  new way to think about glasses 



Current questions about jamming transition (point J) 

Is J a glass transition (or is it a singular limit)? 

Is J too ideal (or does potential, shape, T, etc. matter)? 

Is J relevant to laboratory systems (or is it only in computer)? 

Can jamming help understand low-T properties of glasses? 

Can jamming be used to understand poly-crystalline matter? 

How does one go between ground states? 

Can one tune G/B in real materials? 

Is there a lattice model for jamming? 
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