
Simulation Tutorial

1

Aran Borkum 01/11/2021

Objectives
• Understand how FHiCL files work and how to put one together

• Get to grips with lar commands
- lar -c please_for_the_love_of_god_work_v8.fcl

• Generating your first events

• Running the event display

• A really simple analysis of your first events

2

Aran Borkum 01/11/2021

What is a FHiCL

3

Aran Borkum 01/11/2021

What is a FHiCL file?
• FHiCL or fcl (pronounced fickle, not faecal) files are  

Fermilab Hierarchical Configuration Language files

• What the hell does this mean?
- FHiCL files are the configuration files for different stages of larsoft
- They let us choose what we want to run and how we want to run it

• What does hierarchical mean?
- FHiCLs can inherit from FHiCLs which can inherit from FHiCLs which can inherit…
- LArSoft is highly object oriented and parameters can be inherited from parent files

• Is FHiCL its own language?
- You’ll see FHiCL files are very JSON-ish
- That’s enough to call it it’s own language… almost

4

Aran Borkum 01/11/2021

Why use a FHiCL file?
• It avoids having to hard code values into your larsoft modules

• More importantly, you can change these values on the fly
without having to recompile anything!

• Also, you just have to

5

Aran Borkum 01/11/2021

Writing in the FHiCL language
• How do we define variables in a FHiCL file?

- Everything is based on name-value pairs
- For example:

 pi: 3.14
 this_number: 17
 mass_ordering: “normal”

- Commenting can be done in Python or C++ style

 comment_style: “Python” # wow, look, a comment
 comment_style: “C++” // damn, another comment

6

Aran Borkum 01/11/2021

FHiCL - sequences
• All sequences are defined by square bracketed lists [] with

comma delimiters  
 
list1: [1, “two”, 3] # this is fine

list2: [6, [7, “Eight”], 9, 10] # this is cool too

• You can also overwrite any of the entries after the fact 
 
list2[3]: 4 # 10 changed to 4

7

Aran Borkum 01/11/2021

FHiCL - tables
• Tables are basically dictionaries in python, they’re enclosed in

curly braces  
 
tab1:
{
 a: 123
 b: “I hope my code runs”
 list: [“you”, “suck”, “at”, “coding”]
}

• And overwriting works similar to before  
 
tab1.a: 456 # change the value of a from 123 to 456

• Entire tables can be referenced using @local::var, like this  
 
tab2: @local::tab1 # tab2 is now the same as tab1

8

Aran Borkum 01/11/2021

FHiCL - table splicing
• You can splice two tables together using a reference
@table::tab

tab3: {
 @table::tab1
 new_value: true
}

• Which is the equivalent to

tab3: {
 a: 123
 b: “I hope my code runs”
 list: [“you”, “suck”, “at”, “coding”]
 new_value: true
}

9

Aran Borkum 01/11/2021

FHiCL - prologs
• Prologs contain configurations that can be accessed in other

files

• Writing a prolog lets us define alternative values to feed into our
simulations

• They look like this  
 
BEGIN_PROLOG
numi: 120 # 120 GeV beam energy
END_PROLOG

BeamEnergy: @local::numi

10

Aran Borkum 01/11/2021

FHiCL - including things
• Instead of writing long, bulky files we can write our

configurations in one file and include it in another

• We could write a file, MyBeamConfiguration.fcl, which contains
the prolog from the previous slide

• We’ll touch more on this later, but it’s good to mention now

11

FHiCL files you can
actually run

12

Aran Borkum 01/11/2021

FHiCL files you can run
• The FHiCL files you actually run have a very important structure

and some fields that a) have to be there and b) need to be filled
out properly

• The overall structure is  
 
#include

process_name:

services: {}
source: {}
physics: {}
outputs: {}

• Let’s go through these one by one

13

Aran Borkum 01/11/2021

include
• Different experiments have their own files and configurations

that go into each simulation

• In general you’ll see:
- experiment specific configurations

include “simulationservices_sbnd.fcl"
include “messages_sbnd.fcl”

- Configuration files containing prologs

include “singles_sbnd.fcl”
include “rootoutput_sbnd.fcl”

• It can be super annoying trying to find these FHiCLs to see what’s in
there. You can use findfcl.sh to find them 
 
./findfcl.sh singles_sbnd.fcl

14

hint hint keep this file
It’ll always be useful. I
Literally can’t stress that
enough

Aran Borkum 01/11/2021

process_name
• Smart people who write smart code have given smart names to

the different modules they’ve made

• For example, the module that generates single particles is called
SingleGen 🤯

• If you want to write a FHiCL for generating your own single
particles you would add 
 
process_name: SingleGen

• These modules exist for generation, propagation,
reconstruction, etc

15

Aran Borkum 01/11/2021

services
• Services is where you put all of the simulation specific services

for what you’re trying to run
- This can mean things like:

- Detector geometry
- Physical properties
- File management

services: {
 @table::sbnd_simulation_services
 TFileService: { fileName: “my_dank_file_name.root” }
}

16

Aran Borkum 01/11/2021

services
• Services is where you put all of the simulation specific services

for what you’re trying to run
- This can mean things like:

- Detector geometry
- Physical properties
- File management

services: {
 @table::sbnd_simulation_services
 TFileService: { fileName: “my_dank_file_name.root” }
}

17

SBND specific services
Loaded from
simulationservices_sbnd.fcl

Aran Borkum 01/11/2021

services
• Services is where you put all of the simulation specific services

for what you’re trying to run
- This can mean things like:

- Detector geometry
- Physical properties
- File management

services: {
 @table::sbnd_simulation_services
 TFileService: { fileName: “my_dank_file_name.root” }
}

18

Naming the output root file

Aran Borkum 01/11/2021

source
• This is were we specify the input information (or source) 
 
 
 
 
source: {
 module_type: EmptyEvent
 timestampPlugin: {
 plugin_type: “GeneratedEventTimestamp"
 }
 maxEvents: 10
 firstRun: 1
 firstEvent: 1
}

19

Aran Borkum 01/11/2021

source
• This is were we specify the input information (or source) 
 
 
 
 
source: {
 module_type: EmptyEvent
 timestampPlugin: {
 plugin_type: “GeneratedEventTimestamp"
 }
 maxEvents: 10
 firstRun: 1
 firstEvent: 1
}

20

This means we’re starting
with an empty event. We can also
specify that we’re reading from
ROOT file with ROOTInput

Aran Borkum 01/11/2021

source
• This is were we specify the input information (or source) 
 
 
 
 
source: {
 module_type: EmptyEvent
 timestampPlugin: {
 plugin_type: “GeneratedEventTimestamp"
 }
 maxEvents: 10
 firstRun: 1
 firstEvent: 1
}

21

Default number of events
to generate and default
run and event number

Aran Borkum 01/11/2021

physics
• This is where we configure the modules that actually do

something on the event 
 
physics: {

 producers: {
 rns: {module_type: “RandomNumberSaver”}
 generator: @local::sbnd_singlep
 }
 analyzers: {}
 filters: {}
 simulate: [rns, generator]
 stream1: [out1]
 trigger_paths: [simulate]
 end_paths: [stream1]
}

22

Aran Borkum 01/11/2021

physics
• This is where we configure the modules that actually do

something on the event 
 
physics: {

 producers: {
 rns: {module_type: “RandomNumberSaver”}
 generator: @local::sbnd_singlep
 }
 analyzers: {}
 filters: {}
 simulate: [rns, generator]
 stream1: [out1]
 trigger_paths: [simulate]
 end_paths: [stream1]
}

23

Add information to the ROOT file

Aran Borkum 01/11/2021

physics
• This is where we configure the modules that actually do

something on the event 
 
physics: {

 producers: {
 rns: {module_type: “RandomNumberSaver”}
 generator: @local::sbnd_singlep
 }
 analyzers: {}
 filters: {}
 simulate: [rns, generator]
 stream1: [out1]
 trigger_paths: [simulate]
 end_paths: [stream1]
}

24

Perform analysis on the ROOT file.
Notice the “z” because, you know, Americans

Aran Borkum 01/11/2021

physics
• This is where we configure the modules that actually do

something on the event 
 
physics: {

 producers: {
 rns: {module_type: “RandomNumberSaver”}
 generator: @local::sbnd_singlep
 }
 analyzers: {}
 filters: {}
 simulate: [rns, generator]
 stream1: [out1]
 trigger_paths: [simulate]
 end_paths: [stream1]
}

25

Remove events we don’t want

Aran Borkum 01/11/2021

physics
• This is where we configure the modules that actually do

something on the event 
 
physics: {

 producers: {
 rns: {module_type: “RandomNumberSaver”}
 generator: @local::sbnd_singlep
 }
 analyzers: {}
 filters: {}
 simulate: [rns, generator]
 stream1: [out1]
 trigger_paths: [simulate]
 end_paths: [stream1]
}

26

Define the order you
want to run things

Aran Borkum 01/11/2021

physics
• This is where we configure the modules that actually do

something on the event 
 
physics: {

 producers: {
 rns: {module_type: “RandomNumberSaver”}
 generator: @local::sbnd_singlep
 }
 analyzers: {}
 filters: {}
 simulate: [rns, generator]
 stream1: [out1]
 trigger_paths: [simulate]
 end_paths: [stream1]
}

27

Define the output stream if you need
it (configured later anyway)

Aran Borkum 01/11/2021

physics
• This is where we configure the modules that actually do

something on the event 
 
physics: {

 producers: {
 rns: {module_type: “RandomNumberSaver”}
 generator: @local::sbnd_singlep
 }
 analyzers: {}
 filters: {}
 simulate: [rns, generator]
 stream1: [out1]
 trigger_paths: [simulate]
 end_paths: [stream1]
}

28

Everything that modifies the event

Aran Borkum 01/11/2021

physics
• This is where we configure the modules that actually do

something on the event 
 
physics: {

 producers: {
 rns: {module_type: “RandomNumberSaver”}
 generator: @local::sbnd_singlep
 }
 analyzers: {}
 filters: {}
 simulate: [rns, generator]
 stream1: [out1]
 trigger_paths: [simulate]
 end_paths: [stream1]
}

29

Everything that doesn’t modify the
event, such as analysers and
output streams

Aran Borkum 01/11/2021

outputs
• Finally, we define where the output goes  
 
outputs: {
 out1: {
 @table::sbnd_rootoutput
 fileName: “%ifb_ana.root”
 }
}

30

Aran Borkum 01/11/2021

outputs
• Finally, we define where the output goes  
 
outputs: {
 out1: {
 @table::sbnd_rootoutput
 fileName: “%ifb_ana.root”
 }
}

31

All of the output information
from rootoutput_sbnd.fcl

Aran Borkum 01/11/2021

outputs
• Finally, we define where the output goes  
 
outputs: {
 out1: {
 @table::sbnd_rootoutput
 fileName: “%ifb_ana.root”
 }
}

32

Take the file name you started
with “my_file.root” and return a
file called “my_file_ana.root”.

Another good option is to use
“my_file _%p-%tc.root”. Try it and
see what it does

Aran Borkum 01/11/2021

Configuring FHiCLs
• Most of the time you’ll want to make small changes without

having to re-write all of the configurations

• You can override a parameter after you define them  
 
physics: {
 producers: {
 rns: {module_type: “RandomNumberSaver”}
 generator: @local::snbd_singlep
 }
}

Set some parameters for the generator
physics.producers.generator.PDG: [2112] # generate a neutron
physics.producers.generator.P0: [0.5] # give it 500 MeV

33

Aran Borkum 01/11/2021

Finding your configurable parameters

• You start with a FHiCL file like this  
 
#include “singles_sbnd.fcl”

physics: {
 producers: {
 generator: @local::sbnd_singlep
 }
}

• The generator is being sourced from the included file… so look
in there

• Remember that findfcl.sh script!

34

Aran Borkum 01/11/2021

Finding your configurable parameters

• Look in the first file 
 
./findfcl.sh singles_sbnd.fcl

Found fhicl file(s):
/some/long/tedious/path/to/singles_sbnd.fcl

• See what we find 

35

Aran Borkum 01/11/2021

Finding your configurable parameters

• This isn’t exactly what we’re looking for, but there is another file
included at the top

36

Aran Borkum 01/11/2021

Finding your configurable parameters

• Now we’ve found all of the different configurable parameters

• We got there by looking through all of the files included (which
is something you’re going to do a lot of)

37

Aran Borkum 01/11/2021

Generating events

38

Aran Borkum 01/11/2021

Particle generators
• There are a few generators used in larsoft simulations, all for

different purposes

• The simplest one is the single particle gun, literally fires off one
particle at a time

• Some more fancy ones are:
- GENIE: for generating neutrinos
- CORSIKA: for cosmic rays
- MARLEY: for supernova and solar neutrinos
- People doing BSM usually write their own generators or modify GENIE

39

Aran Borkum 01/11/2021

Single particle gun
• We’re going to solely focus on the single particle gun

• This generates a particle (an sims::MCParticle if you wanna be
fancy) with some initial parameters:
- Start position (x, y, z)
- Start momentum (px, py, pz)
- PDG code
- Energy range
- Etc

40

Aran Borkum 01/11/2021

GEANT4
• GEANT4 is responsible for propagating particles around a

geometry (and is also the second laziest acronym to come from
CERN)

• GEANT4 simulates all the physical processes that go on in the
detector
- Interaction with argon
- Ionisation
- Showers
- Decays

41

Aran Borkum 01/11/2021

Detector Simulation
• Finally there’s detector simulation which handles what the APA

planes will see when charge passes by the wires and light hits
the photon detectors

• There’s also reconstruction, but we’ll worry about that later

• DETSIM produces raw::RawDigit objects which tell you
- Which APA you’re on
- The channel number and ADC waveform of every wire in the detector over a given

time window

42

Aran Borkum 01/11/2021

Making lar commands
• To run a FHiCL file you need to get comfortable with lar

commands

• There are a lot of flags you can pass into a lar command but the
important ones are:
- -c, —config, the fhicl file you’re running
- -s, —source, the source file (a ROOT file made be some previous stage)
- -n, —evts, the number of events to run
- -o, —output, overriding the name of the outputted file
- -k, —nskip, the number of events to skip

• A typical lar command would look like this  
 
lar -c run_geant4.fcl -s some_particles.root -n -1

43

This means run over
every event possible

Aran Borkum 01/11/2021

Running the event display
• LArSoft has an event display that you can use to view your

events and make sure things are going how you expect

• There are lots of features, however it can be quite slow. If you
have a VNC working it speeds things up a lot

• To run it use  
 
lar -c evd_sbnd.fcl -s your_detsim_file.root

44

Running your own
simulations

45

Aran Borkum 01/11/2021

Main task
• You have a file “prod_particle_template.fcl”

• Fill out the required fields with information from the slides and made sure you give
your output file name something interesting

• Generate 10 events with 1 muon and 1 proton with the following requirements:
- Start position of both particles (-100, 0, 150)
- Muon:

- momentum: 700 MeV
- theta_xz: -10 degrees
- theta_yz: 0 degrees

- Proton:
- momentum 800 MeV
- theta_xz: 35 degrees
- theta_yz: 10 degrees

• Run GEANT4 over the produced particle file

• Run DETSIM over the GEANT4 file

• Run the event display over your DETSIM file and see what you’ve got

• Repeat everything above, but add some gaussian variation to the angles

46

Aran Borkum 01/11/2021

Plotting the angular distribution

• A directory called PlottingScripts is available to you

• Go into PlottingScripts/build and run the following
- cmake ../
- make

• In PlottingScripts/Analyzer/PlottingScript.cxx, fill out the blank parts to
make a histogram of the angle between the muon and the proton

• Remember to compile after you’ve made any changes by going into
PlottingScrips/build and running the make command

• To run the plotting script go into the build directory and run the following 
 
./Analyzer/PlottingScript -i /path/to/your/file_ana.root -t tree/name -o
output_name -n <number of events>

the output name does not need a file extension, a pdf will be produced

• If you don’t like using cmake feel free to write your own macro to do this

47

Aran Borkum 01/11/2021

Bonus task
• Generate 10 muon proton events like before, but add 5 additional

muons distributed randomly throughout the detector to mimic
cosmic rays

• Check it out in the event display and see what a neutrino event
might look like

48

Aran Borkum 01/11/2021

Tips for writing your fcl
• The generation fcl is practically empty

• Make sure you have all the necessary includes at the top of your
file. If you have something like  
 
services: {  
 @table::sbnd_simulation_services  
}  
 
You need the right fcl at the top of your file, otherwise larsoft
won’t find it!

49

Aran Borkum 01/11/2021

Tips for writing your fcl
• If you’re running a module such as SingleGen, you’ll need to

specify all the required fcl parameters needed. Not just what you
want

• For example, SingleGen required SigmaP (the breadth of the
energy range) to be set. If you don’t need it set it to a default
value  
 
physics.producers.generator.SigmaP: [0.0]

• To find out what parameters are required you can:
- Look through other fcl files that use the module
- Read the documentation
- Use the ART missing parameter error message

50

Aran Borkum 01/11/2021

A note on text editors
• Using emacs:

- Open a file by doing emacs -nw my_file.fcl
- Once you’re done save using crtl+x ctrl+s
- Exit using ctrl+x ctrl+c
- This doesn’t seem to be available when connecting through ssh but does work in

the web client

• Using vim:
- Open a file using vi my_file.fcl
- Attempt to type by first pressing I to go into insert mode
- Try saving and quitting by pressing escape, then entering :wq
- If you have problems ask Dom or anyone else crazy enough to use vim, then listen

to the lecture trying to rationalise their use of vim

• Using nano, pico or any other terminal editor
- Why? Just use emacs

51

