
Convolutional Neural
Network Tutorial

Leigh Whitehead

3rd November 2021

6th UK LArTPC Software Analysis Workshop

#lecture_and_tutorial_deep_learning

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• This tutorial is independent from the previous days

• We will be doing everything in python
• Python is the most popular language for deep learning and the majority of

online resources use python

• I know python will be alien to some of you…

• I don’t have time to teach you python here, but I hope the code I
provide is reasonably self-explanatory
• Structures are mostly similar to C++ but with different syntax

• We will use tensorflow (via keras), but PyTorch is also a popular
framework for deep learning

Introduction

2

All you need to run this tutorial is a web-browser!

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Today we will work with python notebooks (also called Jupyter
notebooks)

• There are a few advantages for tutorials
• No environment to set up or packages to install on your machine

• The code can be interspersed with text and pictures

• Each small block of code can be executed to show intermediate output

• Click on a block to edit it

• Press shift + enter to execute the code

• We will run in a web-browser using one of two methods:
• Using Google Colab if you have a Google account

• Binder (via a GitHub repository)

• NB: the Google Colab machines seem to run ~2x faster

Python notebooks

3

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Load Google Colab: https://colab.research.google.com

• A popup to load a notebook will appear

• Click on the GitHub tab

• Enter this GitHub URL: https://github.com/lhwhitehead/TutorialDL

• Select the exercise

Google Colab

4

NB: this is the solution… only look if you are completely stuck! Ask for help first.

https://colab.research.google.com
https://github.com/lhwhitehead/TutorialDL

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Load Google Colab: https://colab.research.google.com

• A popup to load a notebook will appear

• Click on the GitHub tab

• Enter this GitHub URL: https://github.com/lhwhitehead/TutorialDL

• Select the exercise

• You should see something like this!

Google Colab

5

https://colab.research.google.com
https://github.com/lhwhitehead/TutorialDL

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• You can run Binder directly from my GitHub

• Visit my GitHub page: https://github.com/lhwhitehead/TutorialDL

• Click on the launch binder 
button at the bottom

• Note that it seems about 
2.5x slower to train 
the network here

• Also takes a couple of 
minutes to load up

Binder

6

https://github.com/lhwhitehead/TutorialDL

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• You can run Binder directly from my GitHub

• Visit my GitHub page: https://github.com/lhwhitehead/TutorialDL

• Click on the launch binder 
button at the bottom

• You should see a screen 
like this, and a terminal 
below. Just wait…

• After a few minutes you’ll 
have the server running

Binder

7

https://github.com/lhwhitehead/TutorialDL

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• You should see something like this
• Navigate into exercises on the left

Starting Binder

8

NB: this is the solution… only look if you are completely stuck! Ask for help first.

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• You should see something like this
• Navigate into exercises on the left

• Select the only file in there

Starting Binder

9

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• You should see something like this
• Navigate into exercises on the left

• Select the only file in there

• This will load the actual notebook

Starting Binder

10

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Binder has the unfortunate “feature” that sessions disconnect quickly
after periods with no activity
• Please try to regularly save your work to the browser storage using this

button

• If you see the disconnect message, first try reconnecting to the kernel

Reconnecting Binder

11

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Binder has the unfortunate “feature” that sessions disconnect quickly
after periods with no activity
• Please try to regularly save your work to the browser storage using this

button

• If you see the disconnect message, first try reconnecting to the kernel

Reconnecting Binder

12

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Binder has the unfortunate “feature” that sessions disconnect quickly
after periods with no activity
• Please try to regularly save your work to the browser storage using this

button

• If you see the disconnect message, first try reconnecting to the kernel

Reconnecting Binder

13

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Binder has the unfortunate “feature” that sessions disconnect quickly
after periods with no activity
• Please try to regularly save your work to the browser storage using this

button

• If you see the disconnect message, first try reconnecting to the kernel
• If this doesn't work, I think you need to start again from the GitHub page

and use the restore from browser storage button

Reconnecting Binder

14

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• We don’t have time to use a large neutrino dataset to classify neutrinos
• We will use a simple convolutional neural network to classify the MNIST

benchmark data set

• MNIST is a collection of 70,000  
handwritten digits from 0-9

• Each image is 28 x 28 pixels

• Has a target (truth) from 0-9

• Was a benchmark dataset for CNNs 
for a number of years

The Aim

15

NB: This was the first use-case for a CNN! LeCun, Y., et al., Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1(4), 541–551, 1989, https://doi.org/10.1162/neco.1989.1.4.541

https://psycnet.apa.org/doi/10.1162/neco.1989.1.4.541

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• The network we will build looks something like this:

Our Network

16

28 x 28 pixel
input image

32 (3x3) pixel
filters

(2x2) max
pooling

128 neuron
hidden layer

10
Outputs

64 (3x3) pixel
filters

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• The network we will build looks something like this:

Our Network

17

Two convolutional layers

This layer combines (2x2) pixels into a single
pixel, and the value is the max of the four

Scores for the image to be each of
the 10 categories

These are also known
as dense layers

28 x 28 pixel
input image

32 (3x3) pixel
filters

(2x2) max
pooling

128 neuron
hidden layer

10
Outputs

64 (3x3) pixel
filters

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Ok, now we can play with something!
• The following will be based on this nice tutorial

• You will see that the exercise notebook as a number of lines of code
that just say None
• These are the parts of the code that you need to fill in
• I’ve provided some descriptions, explanations and hints to help you fill in

the blanks
• I’ll also cover it in these slides as we go along

• First things first
• Get your notebook loaded in Google Colab or Binder
• We’ll get started once you’ve all loaded it up

The exercise

18

https://towardsdatascience.com/build-your-own-convolution-neural-network-in-5-mins-4217c2cf964f

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• The first thing we need to do is load the required libraries
• The first block of code takes care of this

• Run it by selecting the box it is in and pressing shift + enter

• You will see it print out the tensor flow version just to show it has done
something

• You might see a warning / error about GPUs… ignore this

• You can think of these import statements as the python version of the C++
#include statement

The exercise

19

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• The next block of code defines some useful variables
• See that some of these are hyper parameters like the learning rate

• As before, run it by pressing shift + enter

• There isn’t any output for this block of code

Defining some useful variables

20

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• We are now ready to load the MNIST dataset
• Automatically downloads when requested from keras

• We can print a few 
images just to see 
how they look

• Note that the 
dataset has been 
split into train and 
test samples for us

Loading the MNIST dataset

21

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• We need to slightly rearrange the data shapes for the CNN
• Here are the first two lines of code for you to fill in

• Click on the block to start editing

• Read the hints above the code block

Preparing the data

22

Expected output

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• This large block of code is used to build our CNN
• There are lots of blanks to fill in here!

• Don’t worry, we will discuss these missing lines

• More details on the 
functions are given 
in the python  
notebook

Building the CNN

23

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Lets remember our network architecture…

• Define the first convolutional 
layer using Conv2D(…)

• Define input size to match 
the input image

Building the CNN

24

28 x 28 pixel
input image

32 (3x3) pixel
filters (2x2) max pooling 128 neuron

hidden layer 10 Outputs64 (3x3) pixel
filters

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Lets remember our network architecture…

• Define the first convolutional 
layer using Conv2D(…)

• Define input size to match 
the input image

Building the CNN

25

28 x 28 pixel
input image

32 (3x3) pixel
filters (2x2) max pooling 128 neuron

hidden layer 10 Outputs64 (3x3) pixel
filters

• Let’s see this function a little more clearly
• We add a 2D convolutional layer

• We want 32 filters

• The kernel size (or filter size) is 3 x 3

• We will use the ReLU activation function

• This is the first layer: need to tell the Sequential model what to expect
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Lets remember our network architecture…

• Now for the second 
convolution

• The Sequential model 
keeps track of the  
data shape between  
layers
• Omit the input_shape for  

all layers now

Building the CNN

26

28 x 28 pixel
input image

32 (3x3) pixel
filters (2x2) max pooling 128 neuron

hidden layer 10 Outputs64 (3x3) pixel
filters

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Lets remember our network architecture…

Building the CNN

27

28 x 28 pixel
input image

32 (3x3) pixel
filters (2x2) max pooling 128 neuron

hidden layer 10 Outputs64 (3x3) pixel
filters

• Now for the max pooling
layer
• Merges 2x2 pixels and

assigns its value as the
maximum of the four pixels

• Use MaxPooling2D(…)
• See hints in the exercise

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Lets remember our network architecture…

Building the CNN

28

28 x 28 pixel
input image

32 (3x3) pixel
filters (2x2) max pooling 128 neuron

hidden layer 10 Outputs64 (3x3) pixel
filters

• Now to add a Dropout layer
(not shown on the diagram)
• Use Dropout(…)
• We want to switch off 25%

of neurons

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Lets remember our network architecture…

Building the CNN

29

28 x 28 pixel
input image

32 (3x3) pixel
filters (2x2) max pooling 128 neuron

hidden layer 10 Outputs64 (3x3) pixel
filters

• We need to go from 2D
data down to 1D for the
dense layers (not shown in
the diagram)

• Use Flatten()

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Lets remember our network architecture…

Building the CNN

30

28 x 28 pixel
input image

32 (3x3) pixel
filters (2x2) max pooling 128 neuron

hidden layer 10 Outputs64 (3x3) pixel
filters

• This hidden layer is a dense
layer with 128 neurons

• Use Dense(…)

• Use the ReLU activation

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Lets remember our network architecture…

Building the CNN

31

28 x 28 pixel
input image

32 (3x3) pixel
filters (2x2) max pooling 128 neuron

hidden layer 10 Outputs64 (3x3) pixel
filters

• Add a second Dropout layer
(not shown on the diagram)
• Use Dropout(…)
• This time we want to switch

off 50% of neurons

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Lets remember our network architecture…

Building the CNN

32

28 x 28 pixel
input image

32 (3x3) pixel
filters (2x2) max pooling 128 neuron

hidden layer 10 Outputs64 (3x3) pixel
filters

• Add the final output layer
• This is another Dense(…)

layer, but with 10 neurons

• Must use the softmax
activation so that the 10
output scores sum to one

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• We now have our CNN!
• The last line prints out a summary of the model

• You should see this output if all is correct

• I will pause here until most of you have successfully built your CNNs

Building the CNN

33

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Now that you’ve got your CNN, you want to train it!
• Firstly we need to tell the model how it should train

• Which loss function? Which optimiser?

• For n-category classification tasks we use categorical crossentropy loss

• In this example, we will use the Adam optimiser

• Follow the clues in the exercise for these

• Finally, we compile the model and it is ready to train

Training your CNN

34

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Now we train the CNN
• Train on the training sample and use the testing sample for validation

• You will need to replace None with model.fit(…)
• There are quite a lot of arguments to include

• Just fill in the blanks with the variables we defined in the exercise

• When finished, hit shift + enter and you’ll see it start to train

• This will take a few minutes

• ~ 2.5 minutes on GoogleColab

• ~ 5 minutes on Binder

Training your CNN

35

In this case, we use our test sample for validation

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Now that you have your network, I want to demonstrate a couple of
uses
• The first uses truth information to validate the performance

• This is exactly what the code does with the validation data

• Run using model.evaluate

• Your loss and accuracy values should match the final validation loss and
accuracy from the training print outs

A quick test

36

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Now we are getting to the real way that your CNN will be used

• We want to classify images without knowing the truth information
• We do this with the model.predict(…) function

• To make it a little more interesting, we will use model.predict as we
search for incorrectly classified images

Running inference

37

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Now we are getting to the real way that your CNN will be used

• We want to classify images without knowing the truth information
• We do this with the model.predict(…) function

• You will need to just 
supply the correct 
images to the predict 
function

• See the hint on the  
a[:b] notation to get the 
first b elements of a

Running inference

38

The number of incorrectly classified images depends on the training.
As a guide, after one epoch, I had 21 / 1000 incorrect classifications.

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Now, for fun, let’s have a look at the incorrect images

• You’ll see an image alongside some information

• Just change the value of im to see different images

Checking the incorrect images

39

This number 5 was classified as a 3.
It isn’t the best number 5 that I’ve

ever seen!

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• To use our network in a realistic way we need to save it
• To do so, we simply use the model.save(…) function

• Just choose some name with a .h5 file extension

• Do a quick check to see that the file was created

• (Google Colab) Click on the folder icon on the left side to open the file
browser, navigate up one level, then click the little down arrow next to
content

Saving your model

40

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• It is just as simple to load a model

• We make use of a keras function here:
• Load the model and then print the summary to check it

• You should find that you get  
the same network as before!

• Now we can do a little test 
to make sure it works too

Loading your model

41

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Let’s just run over a few images from the testing data
• We’ll do it one-by-one this time just to show a trick that you might need at

some point

• Processing the images together would be more efficient

• I haven’t left blanks here, but you can compare it to the earlier code
where we looked for incorrect classifications

Testing your model

42

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• At this stage you can just explore changing things and see what
difference it makes

• I advise starting with the number of epochs
• Try increasing the epochs to 2 and then 5

• Should see the loss decreasing and accuracy increasing with each epoch

• Change the learning rate
• Raise and lower by a factor of 10

• On the next slide I’ll show what happens when I do this but will wait for
you to have a go before discussing it

Play around a bit!

43

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Running for 5 epochs:

• Results improve as we train for longer (of course!)

• Increase the learning rate to 0.01

• Accuracy reaches a maximum of 88%

• The optimiser hasn’t been able to find the correct minimum

Play around a bit!

44

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Running for 5 epochs:

•

• Decrease the learning rate to 0.0001

• Accuracy improves but more slowly that with the default value

• Would need to run for more epochs to see if was in the global minimum

Play around a bit!

45

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Running for 5 epochs:

•

• Add another convolutional layer (in this case, just before Flatten())

• The model is now more complex and has more parameters

• As expected, the accuracy improves!

Play around a bit!

46

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• So, this brings me to the end of the tutorial
• Use the File menu to save / download your finished exercise

• There are many things that I couldn’t show you, but I hope this small
introduction can help you get started with deep learning
• There are lots of tutorials and resources online these days

• The other big framework is PyTorch
• Some things are better supported in PyTorch as custom libraries

• Graph neural networks (torch_geometric)

• SparseCNNs

- MinkowskiEngine (Nvidia)

- Facebook’s SparseConvNet (less maintained)

Summary

47

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• There aren’t really any solid rules about what architecture is best for a
certain job

• Hyperparameters are very important
• The learning rate is probably the most important of all

• If the network learns but doesn’t reach good accuracy it is possible that
it is too simple and needs more layers or filters

• If your training accuracy is much higher than the validation accuracy
then your network is likely overtrained… maybe add more dropout?

• Normalising your input parameters from (0,1) typically helps a lot to
keep values “sensible” in the network

Some thoughts (1)

48

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

• Deep learning is not a replacement for brain power!
• You need to think and try to understand why a certain approach will work

for a given task

• There isn’t a golden architecture that will work for all use cases

• There are lots of resources online, so do some research when you
have defined a problem that you want to solve

• Don’t just start using CNNs for everything!

Some thoughts (2)

49

