vy e

P

CAMBRIDGE

NEUTRINO

Convolutional Neural
Network Tutorial

Leigh Whitehead

3rd November 2021

6th UK LArTPC Software Analysis Workshop

#lecture_and_tutorial_deep_learning

Introduction (\

NEUTRINO

e This tutorial is independent from the previous days

* We will be doing everything in python

Python is the most popular language for deep learning and the majority of
online resources use python

| know python will be alien to some of you...

* | don’'t have time to teach you python here, but | hope the code |
provide is reasonably self-explanatory

Structures are mostly similar to C++ but with different syntax

* We will use tensorflow (via keras), but PyTorch is also a popular
framework for deep learning

All you need to run this tutorial is a web-browser!

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 2

Python notebooks

e Today we will work with python notebooks (also called Jupyter
notebooks)

* There are a few advantages for tutorials
No environment to set up or packages to install on your machine
The code can be interspersed with text and pictures
Each small block of code can be executed to show intermediate output
e Click on a block to edit it
e Press to execute the code

* We will run in a web-browser using one of two methods:
Using Google Colab if you have a Google account
Binder (via a GitHub repository)

NB: the Google Colab machines seem to run ~2x faster

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

Google Colab (\

NEUTRINO
e |Load Google Colab: https://colab.research.google.com

A popup to load a notebook will appear

Click on the GitHub tab
Enter this GitHub URL.:

Select the exercise

Examples Recent Google Drive Upload

Enter a GitHub URL or search by organisation or user

[J include private repos

| https://github.com/lhwhitehead/TutoriaIDLII
| |

Repository: [/} Branch: [/
Ihwhitehead/TutorialDL v main v
Path
| O exercises/tensorflow_CNN_tutorial_exercise.ipynb R &
O solutions/tensorflow_CNN_tutorial_solution.ipynb R @

NB: this is the solution... only look if you are completely stuck! Ask for help first.

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 4

https://colab.research.google.com
https://github.com/lhwhitehead/TutorialDL

Google Colab (\

NEUTRINO

e |Load Google Colab: https://colab.research.google.com

A popup to load a notebook will appear
Click on the GitHub tab

Enter this GitHub URL.:

Select the exercise

You should see something like this!

tensorflow CNN tutorial_exercise.ipynb
(J O — — _ Py GD Share Q Q
File Edit View Insert Runtime Tools Help

+ Code + Text #2 Copy to Drive Connect ~ 2 Editing A

v o /) w

Overview
<>
In this exercise you will be filling in some blanks in the code needed to make a CNN to classify MNIST digits.
O You will find various parts of the code that | have replaced with None . Use the information given in the boxes before the code to replace these

None Wwith the required functions. You can run each individual block of code as you go to check that it is doing something sensible.

If you get stuck then please ask one of the tutors, but if you are looking at this again later then you can find a working example here

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 5

https://colab.research.google.com
https://github.com/lhwhitehead/TutorialDL

Binder

* You can run Binder directly from my GitHub
e Visit my GitHub page:

e (Click on the launch binder
button at the bottom

& Ihwhitehead / TutorialDL (Public ® Un

<> Code ssues Pull requests Actions Projects Wiki i Insights Settings

. ¥ main ~ ¥ 1branch © 0tags Go to file Add file ~ Code ~
* Note that it seems about

. . lhwhitehead Add the exercise code d39b6ab 5daysago)10 commits

2.5x slower to train
- B exercises Add the exercise code 5 days ago
th e n etWO rk h e re B solutions Update solution file 5 days ago
[README.md Add binder link 7 days ago
[requirements.txt Update requirements with matplotlib 7 days ago

* Also takes a couple of p
minutes to load up

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 6

https://github.com/lhwhitehead/TutorialDL

Binder (\

NEUTRINO

* You can run Binder directly from my GitHub
e Visit my GitHub page:

e (Click on the launch binder
button at the bottom

* You should see a screen QJ blnder
like this, and a terminal

. -~
below. Just walt...
e After a few minutes you’” Starting repository: Ihwhitehead/TutorialDL/HEAD
have the Server runnlng New to Binder? Check out the Binder Documentation for more information.

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop
e

https://github.com/lhwhitehead/TutorialDL

Starting Binder (\

NEUTRINO
* You should see something like this
Navigate into on the left
N T .
Filter files by na Q
o -/ i [P Notebook 8
3 T &
A
Oth
= M o =
NB: this is the solution... only look if you are completely stuck! Ask for help first.
Simple 0 E 0 {88 Mem:98.38/2048.00 MB Launcher
Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 8

Starting Binder (\

NEUTRINO

* You should see something like this
Navigate into exercises on the left
the only file in there

: File Edit View Run Kernel Tabs Settings Help
[* C [Z Launcher %
i fil Y Nne Q
o &
Y, [P Notebook
- Name & | ast Modified
~ | A tensor flow_cnn_... 0 g P
PPPPPPP
(ipykernel)
u Consol
PPPPPPP
(ipykernel)
oth
s_ M a B
— =1 v e
Terminal Text File Markdown File Python File
tttttttttttttt
Simple 0 B 0 & Mem:98.38/2048.00 MB Launcher

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

Starting Binder

NEUTRINO
* You should see something like this
Navigate into exercises on the left
Select the only file in there
This will load the actual notebook

: File Edit View Run Kernel Tabs Settings Help

- * c [Z Launcher X | [A tensorflow_cnn_Mancheste ® %
o B+ X O » m ¢ » XDownload & & © GitHub (@ Binder Markdown v Python 3 (ipykernel) O #
ilter files by name
- 3
o ./ O .
verview
.— | Name - Last Modified e e
(] tensorflow_cnn_... 10 minutes ago In this exercise you will be filling in some blanks in the code needed to make a CNN to classify MNIST digits.
* You will find various parts of the code that | have replaced with None . Use the information given in the boxes before the code to
replace these None with the required functions. You can run each individual block of code as you go to check that it is doing
something sensible.
If you get stuck then please ask one of the tutors, but if you are looking at this again later then you can find a working example here
Creating your first CNN
We will create a convolutional neural network to classify hand-written digits. This is a classic example making use of the MNIST
dataset, and it is the job that the very first CNN was designed to do.
We will make a simple network with two convolutional layers that will look something like the following:
28 x 28 pixel 32 (3x3) 64 (3x3) (2x2) max 128 neuron 10
input image pixel filters pixel filters pooling hidden layer Outputs
Simple 0 B 0 & Mem:98.38/2048.00 MB Launcher

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

10

Reconnecting Binder (\

NEUTRINO

e Binder has the unfortunate “feature” that sessions disconnect quickly
after periods with no activity

Please try to regularly save your work to the browser storage using

(s Launcher X | [A] tensorflow_CNN_tutorial_ex ®
B+ X0 » m ¢ » XDownload & (& O GitHub & Binder Markdown v Python 3 (ipykernel) O #
Overview

In this exercise you will be filling in some blanks in the code needed to make a CNN to classify MNIST digits.

You will find various parts of the code that | have replaced with None . Use the information given in the boxes before the code to
replace these None with the required functions. You can run each individual block of code as you go to check that it is doing
something sensible.

If you get stuck then please ask one of the tutors, but if you are looking at this again later then you can find a working example here

* |f you see the disconnect message, first try reconnecting to the kernel

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 11
e

Reconnecting Binder (\

NEUTRINO

e Binder has the unfortunate “feature” that sessions disconnect quickly
after periods with no activity

Please try to regularly save your work to the browser storage using this

button
(s Launcher X | [A] tensorflow_CNN_tutorial_ex ®
B+ X0 » m ¢ » XDownload & & O GitHub & Binder Markdown v | Python 3 (ipykernel) Olﬁ

_I_Qa.uun.da.u

Server Connection Error

A connection to the Jupyter server could not be established. JupyterLab will continue trying to reconnect. Check your network connection or Jupyter server

configuration.

g
-I If you get stuck then please ask one of the tutors, but if you are looking at this again later then you can find a working example here

* |f you see the disconnect message, first try reconnecting to the kernel

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 12

Reconnecting Binder (\

NEUTRINO

e Binder has the unfortunate “feature” that sessions disconnect quickly
after periods with no activity

Please try to regularly save your work to the browser storage using this

button
[Launcher X | [A| tensorflow_CNN_tutorial_ex @
B + X O M » m C » XDownload & & O©)GitHub & Binder Markdewr— |Python3(ipyk &
. — /
Overview

Select Kernel

In this exercise you will be fillir Select kernel for: "tensorflow_cnn_Manchester2021_exercise.ipynb" digits.

. Python 3 (ipykernel) v

You will find various parts of th ne boxes pfefore the code to

to chefk that it is doing

replace these None with the

something sensible. m

If you get stuck then please ad , ; - =

find a working example here

* |f you see the disconnect message, first try reconnecting to the kernel

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 13
e

Reconnecting Binder (\

NEUTRINO

e Binder has the unfortunate “feature” that sessions disconnect quickly
after periods with no activity

Please try to regularly save your work to the browser storage using this

button

(s Launcher X | [A] tensorflow_CNN_tutorial_ex ®

B + MO » m C » XDownload & & O©) GitHub ¢ Binder Markdown v Python 3 (ipykernel) O #
Overview

In this exercise you will be filling in some blanks in the code needed to make a CNN to classify MNIST digits.

You will find various parts of the code that | have replaced with None . Use the information given in the boxes before the code to
replace these None with the required functions. You can run each individual block of code as you go to check that it is doing
something sensible.

If you get stuck then please ask one of the tutors, but if you are looking at this again later then you can find a working example here

* |f you see the disconnect message, first try reconnecting to the kernel

If this doesn't work, | think you need to start again from the GitHub page
and use the

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 14
e

The Aim

* \We don't have time to use a large neutrino dataset to classify neutrinos

We will use a simple convolutional neural network to classify the MNIST
benchmark data set

O~
N

G0][4 159 [0 [|on [0y

~
S

1 2 3 S S EY A A B -

E 7

* MNIST is a collection of 70,000
handwritten digits from 0-9

e Each image is 28 x 28 pixels
* Has a target (truth) from 0-9

* \Was a benchmark dataset for CNNs
for a number of years

BNEESESEEE-
MEENEEEEEN
NSNS SN S

5 Y 5 O R R R
REEERERNE]
DEENENENNE
NERRENRE

SRS [v]

~
-

NB: This was the first use-case for a CNN! LeCun, Y., et al., Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1(4), 541-551, 1989, https://doi.org/10.1162/neco0.1989.1.4.541

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 15

https://psycnet.apa.org/doi/10.1162/neco.1989.1.4.541

Our Network (\

NEUTRINO

* The network we will build looks something like this:

AN

28 x 28 pixel 32 (3x3) pixel 64 (3x3) pixel (2x2) max 128 neuron 10
input image filters filters pooling hidden layer Outputs

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 16

Our Network (M

NEUTRINO

* The network we will build looks something like this:

Scores for the image to be each of

Two convolutional layers the 10 categories
I |
| AN
28 x 28 pixel 32 (3x3) pixel 64 (3x3) pixel (2x2) max 128 neuron 10
input image filters filters pooling hidden layer Outputs

This layer combines (2x2) pixels into a single

pixel, and the value is the max of the four
These are also known

as dense layers

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 17

The exercise (\

NEUTRINO

* Ok, now we can play with something!
The following will be based on this

* You will see that the exercise notebook as a number of lines of code
that just say

These are the parts of the code that you need to fill in

I've provided some descriptions, explanations and hints to help you fill in
the blanks

I'll also cover it in these slides as we go along

* First things first

Get your notebook loaded in Google Colab or Binder
We'll get started once you've all loaded it up

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 18

https://towardsdatascience.com/build-your-own-convolution-neural-network-in-5-mins-4217c2cf964f

The exercise (\

NEUTRINO

* The first thing we need to do is load the required libraries
The first block of code takes care of this
Run it by selecting the box it is in and pressing

import tensorflow

from tensorflow import keras

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten
import numpy as np

import matplotlib.pyplot as plot

print('Tensorflow version:',tensorflow.__version__)

Tensorflow version: 2.6.0

You will see it print out the tensor flow version just to show it has done
something

You might see a warning / error about GPUs... ignore this

e You can think of these statements as the python version of the C++
statement
Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 19

Defining some useful variables (\

NEUTRINO

* The next block of code defines some useful variables
See that some of these are hyper parameters like the learning rate

The batch size controls the number of images that are processed simultaneously
It helps with computational efficiency

batch_size = 128

Since we are classifying hand-written digits, we want to classify each image
as one of ten values: 0, 1, 2, ... , 8, 9

num_classes = 10

The number of epochs (iterations over the entire training set) that we want
to train the network for

epochs =1

The learning rate is a very important hyperparameter, as discussed in the

lecture. This is a fairly common default value to try

learning_rate = 0.001

As before, run it by pressing shift + enter
There isn’'t any output for this block of code

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 20
e

Loading the MNIST dataset

* We are now ready to load the MNIST dataset
Automatically downloads when requested from keras

We can print a few
Images just to see
how they look

Note that the
dataset has been
split into train and
test samples for us

NEUTRINO

Since MNIST is a standard dataset, we can just get it straight from keras.

It is also split between train and test sets automatically

— x_train is a numpy array that stores the training images

- y_train is a numpy array that stores the true class of the training images
— x_train is a numpy array that stores the testing images

— y_train is a numpy array that stores the true class of the testing images
(x_train, y_train), (x_test, y_test) = mnist.load_datal()

Let's store the shape of the images for convenience

print(“Shape of input array =",x_train.shape)

training_size = x_train.shape[0]

testing_size = x_test.shape[0]

img_rows = x_train.shape[1]

img_cols = x_train.shape[2]

print('Input images have shape',img_rows, 'x',img_cols)

print('There are',training_size, 'images for training and',testing_size, 'images for testing')

Let's take a look at a few example images from the training set

n_plots=5

print('Example images with true classes',y train[@:n_plots])

fig, ax = plot.subplots(1, n_plots)

for plot_number in range (0,n_plots):
ax[plot_number].imshow(x_train[plot_numberl])

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras—datasets/mnist.npz
11493376/11490434 [] - @s Qus/step

11501568/11490434 |] - @s Qus/step

Shape of input array = (60000, 28, 28)

Input images have shape 28 x 28

There are 60000 images for training and 10000 images for testing

Example images with true classes [5 0 4 1 9]

0
0 25 0 235 0 25 0 235 0 25

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

\

21

Preparing the data (\

NEUTRINO

* \We need to slightly rearrange the data shapes for the CNN
Here are the first two lines of code for you to fill in
Click on the block to start editing
Read the hints above the code block xeras.utiis.to_categorical(y,number_of_ciasses)

We need to make sure the numpy arrays are in the correct format for the CNN
These are 4D tensors where the first number is the number of images, the

following two arguments are the image size, and the final one is the image
depth, which for greyscale is 1, and if these were rgb images, it would be 3
x_train = x_train.reshape(training_size, img_rows, img_cols,1)

x_test = x_test.reshape(testing_size,img_rows,img_cols,1)

The y_train and y_test values we loaded also need to be modified.

These values store the true classification of the images (0-9) as a single
number. We need to convert the single value into an array of length 10

corresponding to the number of output classes. Thus values of

y =2 becomes y = [0,0,1,0,0,0,0,0,0,0]

y = 8 becomes y = [0,0,0,0,0,0,0,0,1,0]

y_train = None

y_test = None

Let's just check the shapes
print('x_train shape =',x_train.shape)
print('y_train shape =',y_train.shape)

(60000, 28, 28, 1)
(60000, 10) Expected output

x_train shape
y_train shape

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 22

Building the CNN

* This large block of code is used to build our CNN
There are lots of blanks to fill in here!

NEUTRINO

Don’t worry, we will discuss these missing lines

Now we get to define our neural network
model = Sequential()
The first convolutional layer needs to know what size images it will operate

- # on, as given by the input_shape variable. Here we apply a vector of 32
® More detaIIS On the # filters of size (3,3) pixels. The 'relu' function provides some non-
linearity, feel free to read up on other activation functions

functions are given =y e o

. input_shape=(img_rows, img_cols,1)))
In the python # Now we add a second convolutional layer, this time with 64 (3,3) filters

Use the relu activation function as above. We don't need to provide the

input shape for any of the following layers as the sequential model
nOte bOOk # knows to pass the output of the previous layer to the current one

model.add (None)

Pooling layers downsample the images — in this case 2x2 pixels become

one pixel. Specifically, we use a MaxPooling2D layer

model.add (None)

Dropout disables some of the neurons to prevent overtraining.

We will use a dropout fraction of 0.25.

model.add (None)

We flatten the images into a single vector to pass into the dense

layers

model.add (None)

The dense layer is what you have seen from a standard neural network

We will use a dense layer with 128 nodes and the relu activation

model.add (None)

More dropout to avoid overtraining, this time with a fraction of 0.5

model.add (None)

The final layer is a dense layer containing (num_classes) nodes.

Using a softmax activation ensures that the sum of these 10 outputs is 1.

model.add(None)

Let's have a look at our model to check it has come together as we expect

model.summary()

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 23
e

Building the CNN

NEUTRINO

e | ets remember our network architecture...

28 x 28 pixel 32 (3x3) pixel
input image filters filters

e Define the first convolutional
layer using

e Define input size to match
the input image

64 (3x3) pixel

©

128 neuron

(2x2) max pooling hidden layer

10 Outputs

Now we get to define our neural network
model = Sequential()
The first convolutional layer needs to know what size images it will operate
on, as given by the input_shape variable. Here we apply a vector of 32
filters of size (3,3) pixels. The 'relu' function provides some non-
tlineanitypeiogal=fipge=bompoa=yp=on=pbher=getivebionyfunctions
model.add(Conv2D(32, kernel_size=(3, 3),

activation='relu’,

input_shape=(img_rows, img_cols,1)))
Now we add a_second convolutional laver. this time with 64 (3,3) filters
Use the relu activation function as above. We don't need to provide the
input shape for any of the following layers as the sequential model
knows to pass the output of the previous layer to the current one
model.add (None)
Pooling layers downsample the images — in this case 2x2 pixels become
one pixel. Specifically, we use a MaxPooling2D layer
model.add (None)
Dropout disables some of the neurons to prevent overtraining.
We will use a dropout fraction of 0.25.
model.add (None)
We flatten the images into a single vector to pass into the dense
layers
model.add (None)
The dense layer is what you have seen from a standard neural network
We will use a dense layer with 128 nodes and the relu activation
model.add (None)
More dropout to avoid overtraining, this time with a fraction of 0.5
model.add (None)
The final layer is a dense layer containing (num_classes) nodes.
Using a softmax activation ensures that the sum of these 10 outputs is 1.
model.add (None)
Let's have a look at our model to check it has come together as we expect
model.summary ()

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop
e

24

Building the CNN

(\

NEUTRINO

e |et's see this function a little more clearly

We add a 2D convolutional layer

We want 32 filters

model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu’',
input_shape=(img_rows, img_cols,1)))

The kernel size (or filter size) is 3 x 3
We will use the RelLU activation function

This is the first layer: need to tell the Sequential model what to expect
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D

e Define the first convolutional
layer using

e Define input size to match
the input image

tilters of size (3,3) pilxels. Ihe ‘relu’ tunction provides some non-

tlineanitypeiogal=fipge=bompoa=yp=on=pbher=getivebionyfunctions

model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu’,
input_shape=(img_rows, img_cols,1)))

Now we add a_second convolutional laver. this time with 64 (3,3) filters

Use the relu activation function as above. We don't need to provide the

input shape for any of the following layers as the sequential model

knows to pass the output of the previous layer to the current one

model.add (None)

Pooling layers downsample the images — in this case 2x2 pixels become

one pixel. Specifically, we use a MaxPooling2D layer

model.add (None)

Dropout disables some of the neurons to prevent overtraining.

We will use a dropout fraction of 0.25.

model.add (None)

We flatten the images into a single vector to pass into the dense

layers

model.add (None)

The dense layer is what you have seen from a standard neural network

We will use a dense layer with 128 nodes and the relu activation

model.add (None)

More dropout to avoid overtraining, this time with a fraction of 0.5

model.add (None)

The final layer is a dense layer containing (num_classes) nodes.

Using a softmax activation ensures that the sum of these 10 outputs is 1.

model.add (None)

Let's have a look at our model to check it has come together as we expect

model.summary ()

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 25
e

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D

Building the CNN

e | ets remember our network architecture...

28 x 28 pixel 32 (3x3) pixel 64 (3x3) pixel
input image filters filters

NEUTRINO

128 neuron
hidden layer

‘ N OW fo r th e SeCO n d ::o,c\ilzv{ Zesgzzeziigiﬁne our neural network

The first convolutional layer needs to know what size images it will operate
. # on, as given by the input_shape variable. Here we apply a vector of 32
CO nVO u IOn # filters of size (3,3) pixels. The 'relu' function provides some non-
linearity, feel free to read up on other activation functions
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu’,
input_shape=(img_rows, img_cols,1)))
Now we add a second convolutional layer, this time with 64 (3,3) filters
Use the relu activation function as above. We don't need to provide the

n
. I he Se uentlal mOdel # input shape for any of the following layers as the sequential model
= ¢ & oot : ¥ o=y current one

oW S U PSS T OO P U T OO CT P T OV I oA oGy O

model.add (None)

k t k f th e esimT—ceoe 2x2 pixels become
ee pS raC O e # one pixel. Specifically, we use a MaxPooling2D layer

model.add (None)

Dropout disables some of the neurons to prevent overtraining.

data shape between Uiy e oot Sraction of 015

model.add (None)

(2x2) max pooling 10 Outputs

We flatten the images into a single vector to pass into the dense

layers .

The dense layer is what you have seen from a standard neural network
We will use a dense layer with 128 nodes and the relu activation

Om it the in put Shape for gogsléagﬂégzz?to avoid overtraining, this time with a fraction of 0.5

model.add (None)
The final layer is a dense layer containing (num_classes) nodes.

aII Iaye rS nOW # Using a softmax activation ensures that the sum of these 10 outputs is 1.

model.add (None)
Let's have a look at our model to check it has come together as we expect
model.summary ()

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

26

Building the CNN

e | ets remember our network architecture...

Za@a®

28 x 28 pixel 32 (3x3) pixel 64 (3x3) pixel
input image filters filters

NEUTRINO

128 neuron

(2x2) max pooling hidden layer

10 Outputs

Now we get to define our neural network

model = Sequential() .

The first convolutional layer needs to know what size images it will operate [) NOW for the max OOI I n
on, as given by the input_shape variable. Here we apply a vector of 32

filters of size (3,3) pixels. The 'relu' function provides some non-

linearity, feel free to read up on other activation functions
model.add(Conv2D(32, kernel_size=(3, 3), ayer

activation='relu’,
input_shape=(img_rows, img_cols,1)))
Now we add a second convolutional layer, this time with 64 (3,3) filters .
Use the relu activation function as above. We don't need to provide the Merg eS 2X2 plxels and
input shape for any of the following layers as the sequential model
knows to pass the output of the previous layer to the current one

. .
gogshig;(?:xls c_!(iwns?mple the images — in this case 2x2 pixels become aSSIg nS ItS Val ue aS the

T UIIC PLIACTUL: JPCUCLTLICUlLly, WC USCT d II4dAT UULLIIYzU Cayci

maximum of the four pixels

We will use a dropout fraction of 0.25.
model.add (None)
We flatten the images into a single vector to pass into the dense

layers

model.add (None)

The dense layer is what you have seen from a standard neural network ’ U

We will use a dense layer with 128 nodes and the relu activation Se

model.add (None)

More dropout to avoid overtraining, this time with a fraction of 0.5

model.add (None) . . .

The final layer is a dense layer containing (num_classes) nodes. See h I ntS In the exe rCISe
Using a softmax activation ensures that the sum of these 10 outputs is 1.

model.add(None)

Let's have a look at our model to check it has come together as we expect

model.summary ()

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 27
e

Building the CNN

e | ets remember our network architecture...

“‘i!!::::::::::::‘\ ||‘|““““““||‘||| ||‘|““““““||‘||| qzéj

28 x 28 pixel 32 (3x3) pixel 64 (3x3) pixel
input image filters filters

NEUTRINO

128 neuron

(2x2) max pooling hidden layer

10 Outputs

Now we get to define our neural network
model = Sequential()
The first convolutional layer needs to know what size images it will operate
on, as given by the input_shape variable. Here we apply a vector of 32
filters of size (3,3) pixels. The 'relu' function provides some non-
linearity, feel free to read up on other activation functions
model.add(Conv2D(32, kernel_size=(3, 3),

activation='relu’,

input_shape=(img_rows, img_cols,1)))
Now we add a second convolutional layer, this time with 64 (3,3) filters ‘ NOW tO add a Dro Out Ia er
Use the relu activation function as above. We don't need to provide the

input shape for any of the following layers as the sequential model

zosgvf;d(ﬁ?"g:z? the output of the previous layer to the current one (not Shown On the d iag ram)

Pooling layers downsample the images — in this case 2x2 pixels become

one pixel. Specifically, we use a MaxPooling2D layer

model.add (None)

Dropout disables some of the neurons to prevent overtraining. Use

e L R R
model.add (None)

. We want to switch off 25%

The dense layer is what you have seen from a standard neural network

We will use a dense layer with 128 nodes and the relu activation Of e O S
model.add (None) n u r n

More dropout to avoid overtraining, this time with a fraction of 0.5
model.add (None)

The final layer is a dense layer containing (num_classes) nodes.

Using a softmax activation ensures that the sum of these 10 outputs is 1.
model.add(None)

Let's have a look at our model to check it has come together as we expect
model.summary ()

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 28
e

Building the CNN

e | ets remember our network architecture...

28 x 28 pixel 32 (3x3) pixel 64 (3x3) pixel
input image filters filters

NEUTRINO

128 neuron

(2x2) max pooling hidden layer

10 Outputs

Now we get to define our neural network
model = Sequential()
The first convolutional layer needs to know what size images it will operate
on, as given by the input_shape variable. Here we apply a vector of 32
filters of size (3,3) pixels. The 'relu' function provides some non-
linearity, feel free to read up on other activation functions
model.add(Conv2D(32, kernel_size=(3, 3),

activation='relu’,

input_shape=(img_rows, img_cols,1)))
Now we add a second convolutional layer, this time with 64 (3,3) filters ‘ We need tO O from 2 D
Use the relu activation function as above. We don't need to provide the

input shape for any of the following layers as the sequential model

knows to pass the output of the previous layer to the current one d t d n t 1 D f r th
node..add (ane) dla aown 1o O e

Pooling layers downsample the images — in this case 2x2 pixels become

one pixel. Specifically, we use a MaxPooling2D layer -
dense layers (not shown in
Dropout disables some of the neurons to prevent overtraining.

We will use a dropout fraction of 0.25.

|
the diagram
We flatten the images into a single vector to pass into the densg

w=rayers
model.add(None)

T T AT T e e T e romma—="tgwaig=d neural network

We will use a dense layer with 128 nodes and the relu activation

model.add (None)

More dropout to avoid overtraining, this time with a fraction of 0.5

model.add (None)

The final layer is a dense layer containing (num_classes) nodes. . Use
Using a softmax activation ensures that the sum of these 10 outputs is 1.

model.add(None)

Let's have a look at our model to check it has come together as we expect

model.summary ()

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 29
e

Building the CNN

e | ets remember our network architecture...

Za@a®

28 x 28 pixel 32 (3x3) pixel 64 (3x3) pixel
input image filters filters

NEUTRINO

128 neuron

(2x2) max pooling hidden layer

10 Outputs

Now we get to define our neural network
model = Sequential()
The first convolutional layer needs to know what size images it will operate
on, as given by the input_shape variable. Here we apply a vector of 32
filters of size (3,3) pixels. The 'relu' function provides some non- . . -
linearity, feel free to read up on other activation functions . IS I en ayer IS a ense
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu’,

n
layer with 128 neurons
Now we add a second convolutional layer, this time with 64 (3,3) filters

Use the relu activation function as above. We don't need to provide the

input shape for any of the following layers as the sequential model

knows to pass the output of the previous layer to the current one

model.add (None)

Pooling layers downsample the images — in this case 2x2 pixels become

one pixel. Specifically, we use a MaxPooling2D layer

model.add (None)

Dropout disables some of the neurons to prevent overtraining. ’ U Se
We will use a dropout fraction of 0.25.

model.add (None)

We flatten the images into a single vector to pass into the depbe

layers

model.add (None)

The dense layer is what you have seen from a standard neyral network

Helfompisblmyoema=donse=layersyitimiif=noceo=ane=bhe=pely s/ctivation

model.add (None) . .
Hmllonomt nopoitmtomayoit=orontnoiningpethicmtino=with=al fraction of 0.5 . Use the ReLU aCtlvatlon
model.add (None)

The final layer is a dense layer containing (num_classes) nodes.

Using a softmax activation ensures that the sum of these 10 outputs is 1.

model.add (None)

Let's have a look at our model to check it has come together as we expect

model.summary ()

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 30
e

Building the CNN

e | ets remember our network architecture...

28 x 28 pixel 32 (3x3) pixel 64 (3x3) pixel
input image filters filters

NEUTRINO

128 neuron

(2x2) max pooling hidden layer

10 Outputs

Now we get to define our neural network
model = Sequential()
The first convolutional layer needs to know what size images it will operate
on, as given by the input_shape variable. Here we apply a vector of 32
filters of size (3,3) pixels. The 'relu' function provides some non-
linearity, feel free to read up on other activation functions
model.add(Conv2D(32, kernel_size=(3, 3),

activation='relu’,

input_shape=(img_rows, img_cols,1)))
Now we add a second convolutional layer, this time with 64 (3,3) filters ‘ Add a Second Dro Out Ia er
Use the relu activation function as above. We don't need to provide the

input shape for any of the following layers as the sequential model

zosgvf;d(ﬁ?"g:z? the output of the previous layer to the current one (not Shown On the d iag ram)

Pooling layers downsample the images — in this case 2x2 pixels become

one pixel. Specifically, we use a MaxPooling2D layer

model.add (None)

Dropout disables some of the neurons to prevent overtraining. Use
We will use a dropout fraction of 0.25.

model.add (None)

We flatten the images into a single vector to pass into the dense

* Loyers vone This time we want to switch

The dense layer is what you have seen from a standard neuralfnetwork

' | /o % of
;ogzlv:/;(lj.(lj(:i;jdense layer with 128 nodes and the relu actigation Off 50 0 O neu ronS

T P O P O O e T T O OV P a AT e st yrtiv=ay [faction of 0.5
model.add (None)
i lgperigegeg emse=gper=eorrtaimimg=(mam=etasses) nodes.

Using a softmax activation ensures that the sum of these 10 outputs is 1.
model.add(None)
Let's have a look at our model to check it has come together as we expect
model.summary ()

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 31
e

Building the CNN

e | ets remember our network architecture...

Za@a®

28 x 28 pixel 32 (3x3) pixel 64 (3x3) pixel
input image filters filters

NEUTRINO

128 neuron

(2x2) max pooling hidden layer

10 Outputs

Now we get to define our neural network

model = Sequential()

The first convolutional layer needs to know what size images it will operate
on, as given by the input_shape variable. Here we apply a vector of 32

filters of size (3,3) pixels. The 'relu' function provides some non-

linearity, feel free to read up on other activation functions
model.add(Conv2D(32, kernel_size=(3, 3),

activation='relu’, -
input_shape=(img_rows, img_cols,1))) . e I n a O u p u aye r
Now we add a second convolutional layer, this time with 64 (3,3) filters
Use the relu activation function as above. We don't need to provide the

input shape for any of the following layers as the sequential model

| |]
zogz?.\/;dgc()"g:z? the output of the previous layer to the current one Th IS IS another

Pooling layers downsample the images — in this case 2x2 pixels become

ﬁoggi.gésfééngecifically, we use a MaxPooling2D layer Iaye r, but Wlth 1 O neu ronS

Dropout disables some of the neurons to prevent overtraining.

We will use a dropout fraction of 0.25.

model.add (None)

We flatten the images into a single vector to pass into the dense

layers

model.add (None)

The dense layer is what you have seen from a standard neural nepwork

We will use a dense layer with 128 nodes and the relu activatifn . M ust use the SOftl I laX

model.add (None)
More dropout to avoid overtraining, this time with a fractjon of 0.5

;0%;;-igg;?0l{:;er isAa_: de_:qse layer COI‘T'ta_?n_‘{:r')g (num_classesf) nodes. aCtlvatIOn SO that the 1 O

e e e e P ek oSe 10 outputs is 1.

i pere Aeseermsrieimemsheseitetermsemebisether 23 ve epec output scores sum to one

model.summary ()

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 32
e

Building the CNN \

NEUTRINO

* \We now have our CNN!
The last line prints out a summary of the model
You should see this output if all is correct

Model: "sequential"

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 26, 26, 32) 320]
conv2d_1 (Conv2D) (None, 24, 24, 64) 18496
max_pooling2d (MaxPooling2D) (None, 12, 12, 64) 0

dropout (Dropout) (None, 12, 12, 64) 0

flatten (Flatten) (None, 9216) 0

dense (Dense) (None, 128) 1179776
dropout_1 (Dropout) (None, 128))

dense_1 (Dense) (None, 10) 1290

Total params: 1,199,882
Trainable params: 1,199,882
Non-trainable params: 0

* | will pause here until most of you have successfully built your CNNs

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 33

Training your CNN (\

NEUTRINO

* Now that you've got your CNN, you want to train it!
Firstly we need to tell the model how it should train
Which loss function? Which optimiser?

Now we build the model, defining the loss function,

optimiser (I typically use Adam)

Learning rate(learning_rate) 1is a parameter that we can optimise to help
convergence - remember that we defined this near the start of the script.
We use categorical cross entropy loss, which is the one

to use for a classification task with more than two classes.

loss_function = None

optimiser = None

We compile the model and tell it which loss function and optimiser to use
model.compile(loss=1loss_function, optimizer=optimiser, metrics=['accuracy'l])

For n-category classification tasks we use categorical crossentropy loss
In this example, we will use the Adam optimiser
Follow the clues in the exercise for these

* Finally, we compile the model and it is ready to train

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 34
e

Training your CNN

NEUTRINO

* Now we train the CNN
Train on the training sample and use the testing sample for validation

Now it is time to actually train the model using the training data with the
true target outputs from MNIST. Use model.fit(...) here. In this case we will
the test sample for validation

None

You will need to replace None with
There are quite a lot of arguments to include

fit(x=<train images>, y=<train labels>, batch size=<batch size>, epochs=<epochs> verbose=<verbose level>,

| validation_data=(<validation_images,validation_labels>)) |

In this case, we use our test sample for validation

Just fill in the blanks with the variables we defined in the exercise
When finished, hit shift + enter and you'll see it start to train

This will take a few minutes
~ 2.5 minutes on GoogleColab
~ 5 minutes on Binder

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

35

A quick test (\

NEUTRINO

* Now that you have your network, | want to demonstrate a couple of
uses

The first uses truth information to validate the performance
This is exactly what the code does with the validation data

[1 # Run the network on the test sample and see how we do.
This should match the final validation print out
from the training as we are using the same test sample.
We use the model.evaluate function that makes use of
truth labels to gauge the performance to get the score variable
score = None
print('Test loss:', score[0])
print('Test accuracy:', score[l])

Run using model.evaluate

evaluate(x=<test images>, y=<test labels>, verbose=<verbose level>)

o |use verbose=0 here, but feel free to setitto 1

Your loss and accuracy values should match the final validation loss and
accuracy from the training print outs

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 36
e

Running inference (\

NEUTRINO

e Now we are getting to the real way that your CNN will be used

* We want to classify images without knowing the truth information
We do this with the function

* To make it a little more interesting, we will use model.predict as we
search for incorrectly classified images

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 37
e

Running inference (\

NEUTRINO

e Now we are getting to the real way that your CNN will be used

* We want to classify images without knowing the truth information
We do this with the function

Make a list of incorrect classifications
incorrect indices = []

® YOU WIII need to JUSt # By default, let's check one thousand images from x test.

You can check more, up to the value of testing size.

SU pply the CorreCt n_images to check = 1000

Use the CNN to predict the classification of the images. It returns an array

Images tO the predICt # containing the 10 class scores for each image. Remember to use the x[:n]

. # notation mentioned above in the following function call
funCtlon raw_predictions = model.predict (x=None)
for i in range(0,n_images_ to check):
Remember the raw output from the CNN gives us an array of scores. We want
to select the highest one as our prediction. We need to do the same thing
for the truth too since we converted our numbers to a categorical

® See the hint On the # representation earlier. We use the np.argmax() function for this

prediction = np.argmax(raw_predictions[i])

a[:b] notation to get the txuen - np.argnax(y_testrin)

if prediction != truth:

fi rSt b elements Of a incorrect indices.append([i,prediction,truth])

print('Number of images that were incorrectly classified =',6len(incorrect_indices))

The number of incorrectly classified images depends on the training.
As a guide, after one epoch, | had 21 / 1000 incorrect classifications.

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 38
e

Checking the incorrect images

NEUTRINO

* Now, for fun, let’'s have a look at the incorrect images

Now you can modify this part to draw different images from the failures list
The reshape just removes the depth dimension for drawing
im = 0
image to plot = x test[incorrect indices[im][0]].reshape(28,28)
fig, ax = plot.subplots(1l, 1)
print('Incorrect classification for image',incorrect indices[im][0],
't predicted =',incorrect indices[im][1],
'with true =',incorrect indices[im][2])
ax.imshow(image to plot.reshape((28,28)))

* You'll see an image alongside some information

Incorrect classification for image 340 : predicted = 3 with true = 5
<matplotlib.image.AxesImage at 0x7£9a31405£90>
0

5

10

This number 5 was classified as a 3.
It isn’t the best number 5 that I've
ever seen!

15

20

25

0 5 10 15 20 25

e Just change the value of im to see different images

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

Saving your model (\

NEUTRINO
* To use our network in a realistic way we need to save it

To do so, we simply use the function
e Just choose some name with a .h5 file extension model.save(<file name>)

Save the model as a .h5 file
None

Do a quick check to see that the file was created

(Google Colab) Click on the icon on the left side to open the file
browser, navigate up one level, then click the little down arrow next to
content
‘= Files X
4 0 B
‘= Files X Q Cl
. o » [@@ bin
c ~ [@ boot
h O content
<> »@sample data ‘D » [sample_data
B B myFirstCNN.h5
‘E} » @@ datalab
» @ dev
Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 40

Loading your model

* |tis just as simple to load a model

(\

NEUTRINO

¢ \We make use of a keras function here: keras.models.load model(<file_name>)
Load the model and then print the summary to check it

Load the model and then print the summary to check it
looks how we expect

loaded _model = None

loaded model.summary()

Model: "sequential 2"

You should find that you get Layer (type)
conv2d 4 (Conv2D) (None, 26, 26, 32) 320

the Same network aS before' conv2d 5 (Conv2D) (None, 24, 24, 64) 18496
max_pooling2d 2 (MaxPooling2 (None, 12, 12, 64) 0
dropout_4 (Dropout) (None, 12, 12, 64) 0

Now we can do a little test fatien 7 (FLatien) o 5716) ;

to make sure It Works too dense 4 (Dense) (None, 128) 1179776
dropout_5 (Dropout) (None, 128) 0
dense 5 (Dense) (None, 10) 1290

Total params: 1,199,882
Trainable params: 1,199,882
Non-trainable params: 0

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

41

Testing your model (\

NEUTRINO

e |et's just run over a few images from the testing data

We'll do it one-by-one this time just to show a trick that you might need at
some point

e Processing the images together would be more efficient

e | haven't left blanks here, but you can compare it to the earlier code
where we looked for incorrect classifications

for i in range(0,10):
Note that here I have to use reshape to prevent losing the first
dimension of the array when using x test[i]. Otherwise
test image would only have three dimensions (img rows,img_cols, 1)
and would be incompatible with the CNN input layer
test _image = x_test[i].reshape(l,img rows,img cols,1)
print('Predicted class =',np.argmax(loaded model.predict(test_image)),
"True class =",np.argmax(y_test[i]))

Predicted class = 7 True class = 7
Predicted class = 2 True class = 2
Predicted class = 1 True class =1
Predicted class = 0 True class = 0
Predicted class = 4 True class = 4
Predicted class = 1 True class =1
Predicted class = 4 True class = 4
Predicted class = 9 True class = 9
Predicted class = 5 True class = 5
Predicted class = 9 True class = 9
Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 42

Play around a bit! (\

NEUTRINO

e At this stage you can just explore changing things and see what
difference it makes

e | advise starting with the number of epochs
Try increasing the epochs to 2 and then 5
Should see the loss decreasing and accuracy increasing with each epoch

* Change the learning rate
Raise and lower by a factor of 10

* On the next slide I'll show what happens when | do this but will wait for
you to have a go before discussing it

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 43
e

Play around a Dbit!

* Running for 5 epochs:

Epoch 1/5
469/469 [
Epoch 2/5
469/469 |
Epoch 3/5
469/469 |
Epoch 4/5

Results improve as we train for longer (of course!)

1l44s

143s

143s

142s

143s

306ms/step
305ms/step
305ms/step
304ms/step

305ms/step

loss:

loss:

loss:

loss:

loss:

* |ncrease the learning rate to 0.01

Epoch 1/5
469/469 [
Epoch 2/5
469/469 [
Epoch 3/5
469/469 [
Epoch 4/5
469/469 [
Epoch 5/5
469/469 [

Accuracy reaches a maximum of 88%

l44s

143s

143s

143s

142s

307ms/step
306ms/step
306ms/step
305ms/step

303ms/step

loss:

loss:

loss:

loss:

loss:

0.

0.

.8255

.1556

.1118

0950

0820

2.4211

0.4542

0.4001

0.3959

0.3898

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

0.

0.

.8635

.9549

.9674

9726

9752

.7741

.8644

.8793

.8814

.8813

val loss:
val loss:
val_ loss:
val loss:

val loss:

val loss:
val_loss:
val loss:
val_ loss:

val loss:

.0675

.0537

.0513

.0414

.0432

.2411

.2787

.1894

.1922

.1923

The optimiser hasn’t been able to find the correct minimum

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop

NEUTRINO

val_accuracy:
val accuracy:
val_ accuracy:
val accuracy:

val accuracy:

val accuracy:
val_accuracy:
val accuracy:
val_ accuracy:

val accuracy:

\

0.9787
0.9825
0.9848
0.9859

0.9857

0.9268
0.9268
0.9407
0.9433

0.9464

44

Play around a Dbit!

* Running for 5 epochs:

Epoch 1/5
469/469 [
Epoch 2/5
469/469 |
Epoch 3/5
469/469 |
Epoch 4/5

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Rd
I

1l44s

143s

143s

142s

143s

306ms/step
305ms/step
305ms/step
304ms/step

305ms/step

loss:

loss:

loss:

loss:

loss:

0.8255

0.1556

0.1118

0.0950

0.0820

* Decrease the learning rate to 0.0001

Epoch 1/5
469/469 [
Epoch 2/5
469/469 [
Epoch 3/5
469/469 [
Epoch 4/5
469/469 [
Epoch 5/5
469/469 [

e e e s] —

149s

147s

147s

147s

147s

315ms/step
314ms/step
314ms/step
313ms/step

313ms/step

loss:

loss:

loss:

loss:

loss:

1.2330

0.3261

0.2022

0.1509

0.1177

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

0

0

.8635

.9549

.9674

.9726

.9752

.7115

.9060

.9397

.9550

.9646

val loss:
val loss:
val_ loss:
val loss:

val loss:

val_ loss:
val loss:
val loss:
val_loss:

val loss:

0

0

.0675

.0537

.0513

.0414

.0432

.1695

.0937

.0694

.0542

.0515

NEUTRINO

val_accuracy:
val accuracy:
val_ accuracy:
val accuracy:

val accuracy:

val_accuracy:
val accuracy:
val accuracy:
val_accuracy:

val accuracy:

Accuracy improves but more slowly that with the default value
Would need to run for more epochs to see if was in the global minimum

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop
e

\

0.9787
0.9825
0.9848
0.9859

0.9857

0.9517
0.9727
0.9790
0.9832

0.9841

45

Play around a bit! (\

NEUTRINO

* Running for 5 epochs:

Epoch 1/5
469/469 [==============================] - 144s 306ms/step - loss: 0.8255 - accuracy: 0.8635 - val loss: 0.0675 - val accuracy: 0.9787
Epoch 2/5
469/469 [==============================] - 143s 305ms/step - loss: 0.1556 - accuracy: 0.9549 - val loss: 0.0537 - val accuracy: 0.9825
Epoch 3/5
469/469 [==============================] - 143s 305ms/step - loss: 0.1118 - accuracy: 0.9674 - val loss: 0.0513 - val accuracy: 0.9848
Epoch 4/5
469/469 [==============================] - 142s 304ms/step - loss: 0.0950 - accuracy: 0.9726 - val loss: 0.0414 - val accuracy: 0.9859
Epoch 5/5
469/469 [==============================] - 143s 305ms/step - loss: 0.0820 - accuracy: 0.9752 - val loss: 0.0432 - val accuracy: 0.9857

e Add another convolutional layer (in this case, just before Flatten())

Epoch 1/5
469/469 [======== ======================] - 164s 349ms/step - loss: 0.4977 - accuracy: 0.8720 - val loss: 0.0628 - val accuracy: 0.9818
Epoch 2/5
469/469 [======== ======================] - 163s 348ms/step - loss: 0.1161 - accuracy: 0.9670 - val loss: 0.0466 - val accuracy: 0.9857
Epoch 3/5
469/469 [==============================] - 163s 348ms/step - loss: 0.0863 - accuracy: 0.9758 - val loss: 0.0431 - val accuracy: 0.9864
Epoch 4/5
469/469 [==============================] - 165s 35Ilms/step - loss: 0.0683 - accuracy: 0.9800 - val loss: 0.0376 - val accuracy: 0.9886
Epoch 5/5
469/469 [======== ====== =============] - 165s 351lms/step - loss: 0.0598 - accuracy: 0.9823 - val loss: 0.0358 - val accuracy: 0.9882

The model is now more complex and has more parameters
As expected, the accuracy improves!

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 46

Summary

* S0, this brings me to the end of the tutorial
Use the File menu to save / download your finished exercise

* There are many things that | couldn’t show you, but | hope this small
iIntroduction can help you get started with deep learning

There are lots of tutorials and resources online these days

* The other big framework is PyTorch
Some things are better supported in PyTorch as custom libraries
e Graph neural networks (torch_geometric)
e SparseCNNs
- MinkowskiEngine (Nvidia)
- Facebook’s SparseConvNet (less maintained)

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 47

Some thoughts (1)

* There aren'’t really any solid rules about what architecture is best for a
certain job

NEUTRINO

* Hyperparameters are very important
The learning rate is probably the most important of all

* |f the network learns but doesn’t reach good accuracy it is possible that
it is too simple and needs more layers or filters

* |f your training accuracy is much higher than the validation accuracy
then your network is likely overtrained... maybe add more dropout?

* Normalising your input parameters from (0,1) typically helps a lot to
keep values “sensible” in the network

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 48
e

Some thoughts (2) (\

NEUTRINO

* Deep learning is not a replacement for brain power!

You need to think and try to understand why a certain approach will work
for a given task

There isn’t a golden architecture that will work for all use cases

* There are lots of resources online, so do some research when you
have defined a problem that you want to solve

* Don't just start using CNNs for everything!

Leigh Whitehead - 6th UK LArTPC Software Analysis Workshop 49

